NG2 is a target gene of MLL-AF4 and underlies glucocorticoid resistance in MLL-r B-ALL by regulating NR3C1 expression
Lopez-Millan B, Rubio-Gayarre A, Vinyoles M, Trincado JL, Fraga MF, Fernandez-Fuentes N, Guerrero-Murillo M, Martinez-Moreno A, Velasco-Hernandez T, Falgàs A, Panisello C, Valcarcel G, Sardina JL, López-Martí P, Javierre BM, Del Valle-Pérez B, García de Herreros A, Locatelli F, Pieters R, Bardini M, Cazzaniga G, Rodríguez-Manzaneque JC, Hanewald T, Marschalek R, Milne TA, Stam RW, Tejedor JRR, Menendez P, Bueno C.
Blood
B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with longterm overall survival rates of similar to 85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival, relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL, and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr BALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis in MLLr B-ALL. Despite its contribution to MLLr B-ALL pathogenesis, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here, we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-ALF transcription elongation factor 4 (AF4) fusion protein. NG2 negatively regulates the expression of the GC receptor nuclear receptor subfamily 3 group C member 1 (NR3C1) and confers GC resistance to MLLr B-ALL cells. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via activating protein-1 (AP-1)-mediated transrepression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1-mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.
Obre a Pubmed