Precision proteogenomics reveals pan-cancer impact of germline variants
Martins Rodrigues F, Terekhanova NV, Imbach KJ, Clauser KR, Esai Selvan M, Mendizabal I, Geffen Y, Akiyama Y, Maynard M, Yaron TM, Li Y, Cao S, Storrs EP, Gonda OS, Gaite-Reguero A, Govindan A, Kawaler EA, Wyczalkowski MA, Klein RJ, Turhan B, Krug K, Mani DR, Leprevost FDV, Nesvizhskii AI, Carr SA, Fenyö D, Gillette MA, Colaprico A, Iavarone A, Robles AI, Huang KL, Kumar-Sinha C, Aguet F, Lazar AJ, Cantley LC, Marigorta UM, Gümüş ZH, Bailey MH, Getz G, Porta-Pardo E, Ding L; Clinical Proteomic Tumor Analysis Consortium.
Cell
We investigate the impact of germline variants on cancer patients' proteomes, encompassing 1,064 individuals across 10 cancer types. We introduced an approach, "precision peptidomics," mapping 337,469 coding germline variants onto peptides from patients' mass spectrometry data, revealing their potential impact on post-translational modifications, protein stability, allele-specific expression, and protein structure by leveraging the relevant protein databases. We identified rare pathogenic and common germline variants in cancer genes potentially affecting proteomic features, including variants altering protein abundance and structure and variants in kinases (ERBB2 and MAP2K2) impacting phosphorylation. Precision peptidome analysis predicted destabilizing events in signal-regulatory protein alpha (SIRPA) and glial fibrillary acid protein (GFAP), relevant to immunomodulation and glioblastoma diagnostics, respectively. Genome-wide association studies identified quantitative trait loci for gene expression and protein levels, spanning millions of SNPs and thousands of proteins. Polygenic risk scores correlated with distal effects from risk variants. Our findings emphasize the contribution of germline genetics to cancer heterogeneity and high-throughput precision peptidomics.
Abrir en Pubmed