Scientific Report
2017
Headquarters
C/ Muntaner, 383 3r. 08021 Barcelona
Tel. (+34) 93 414 55 66

For any matter concerning this report
please contact:
comunicacio@carrerasresearch.org
The report can also be downloaded
from: http://www.carrerasresearch.org

Publisher, layout and typesetting
Josep Carreras Leukaemia Research
Institute

Photography
Photographic archives of the Josep
Carreras Leukaemia Foundation and
the Josep Carreras Leukaemia
Research Institute
“The Josep Carreras Leukaemia Research Institute is a centre without precedent which, through the work and rigour of researchers from around the world, employs the most innovative technologies to gain the upper hand against this disease. That leukaemia will one day be a totally curable disease is now something that lies in all our hands. Today we are all researchers. We will not stop until we find a cure.”

Josep Carreras
President of the Board of Trustees
Josep Carreras Leukaemia Research Institute
(IJC)
Contents
About us
Welcome
Who we are
Mission, vision and values
Challenges
Aims

Our team
Governing bodies
Organisational chart
Scientific Directors
Group Leaders
Human resources

Scientific activities
Lines of research
Research groups
Research projects
Technology platforms
Clinical trials
Innovation and transferability
Publications
Impact factors
Theses read
Seminars and sessions
Courses and congresses

Cooperation
Institutions involved

Communication
Scientific dissemination
Institutional events

Financial data
Income statement
Balance sheet
Fundraising

Upcoming challenges
The European Charter & Code
Election of a General Scientific Director.
About us
Welcome

Our research is built with the work of the patients, relationships, people, management and research teams, communities, hospitals, our three campuses, our foundation and patrons…

We are unstoppable against leukaemia!

Once again the IJC’s annual report is a testimony of the excellent research being carried out at the three Josep Carreras campuses. Our congratulations are due, therefore, to everyone for their magnificent work and scientific rigor.

2017 has been a year of great effort and progress in the fight against leukaemia, combining scientific efforts, cooperation and commitment to society.

We are on a good road to achieving even better results in the near future. We look forward to 2018 to launch the new building of our Institute in Badalona and chose a General Director that will allow us to be a referent first-class centre.

Notable aspects of the IJC’s management and leadership have been engaged since the approval of the integrating SUMA project, with great results from the research groups of Chromatin, metabolism and cell fate, led by Marcus Buschbeck, Regulatory Genomics by Tanya Vavouri, and Immunohematology and glyco-biology by Fumiichiro Yamamoto.

Similarly notable has been the ability to synchronise research, healthcare, innovation and teaching, something of fundamental importance for achieving scientific excellence.

With all this in mind, it is our pleasure to invite you to learn more from the following pages about the activities in 2017, activities which have earned this centre a leading position in biomedical research to confront leukaemia.

Evarist Feliu
President of the Delegate Committee of the Josep Carreras Leukaemia Research Institute
Who we are

Three campuses united to win the battle against leukaemia and other malignant blood diseases

The Josep Carreras Leukaemia Research Institute (IJC), a Generalitat de Catalunya Research Centre (CERCA), was established with the aim of promoting biomedical research into, and the development of, personalised medicine in the field of malignant blood diseases, especially leukaemia. It is a centre without precedent which, with the work and dedication of researchers from around the world, uses the most innovative technologies to try to vanquish leukaemia and other malignant blood diseases.

The IJC has three independent and coordinated scientific campuses: the Hospital Clinic-UB Campus, located at the research facilities of Barcelona's Hospital Clínic, and those of the University of Barcelona (UB) Faculty of Medicine, coordinated by Dr. Álvaro Urbano Ispizua, under the research direction of Dr. Pablo Menéndez; the Catalan Institute of Oncology/Germans Trias i Pujol Campus in Badalona, located near the Germans Trias i Pujol University Hospital and its research foundation and the Autonomous University of Barcelona (UAB) Germans Trias i Pujol Teaching Unit. The ICO-Germans Trias i Pujol Campus is coordinated by Dr. Evarist Feliu and the Research Director is Dr. Francesc Solé. The third campus is the Sant Pau Campus and its research foundation, located within the health care facilities of the Hospital de la Santa Creu i Sant Pau and the UAB's Sant Pau teaching unit, coordinated by Dr. Jordi Sierra.

The IJC's Hospital Clinic-UB Campus reaffirms the UB Faculty of Medicine and the Hospital Clinic's scientific commitment to excellence in the field of hematology, which commenced with the work of Prof. Farreras Valenti and which has been able to continue thanks to the extraordinary work carried out by Prof. Ciril Rozman and those who studied under him.
Mission

It is the mission of the Josep Carreras Leukaemia Research Institute to carry out research into the epidemiological, preventive, clinical, translational and basic aspects of leukaemia and other malignant blood diseases through innovation, in order to find a cure.

Vision

The Josep Carreras Leukaemia Research Institute’s vision is to be a world-renowned, multi-campus research centre of excellence that contributes towards improved outcomes and a cure for patients suffering from leukaemia and other malignant blood diseases through innovation, sustainability, social responsibility, talent and professional expertise.

Values

Altruism, in accordance with the Foundation's principles.
Proximity, patient-orientated.
Staff commitment and correlation.
Mutual respect.
Corporate alignment of the 3 campuses and the Foundation.
Participative scientific leadership.
Continuing cooperation and the forging of alliances with stakeholders.
The integration of research and health care.
Continuous improvement and perseverance as a way of working.
Conceptual, methodological and technological innovation.
Management dynamics that respect the environment.
Efficacy and efficiency in the optimisation of resources.
Transparency, integration with the fabric of society.
Continuous evaluation and accountability.
Challenges

01. To discover the causes of leukaemia and other malignant blood diseases
02. To achieve a cure, not a chronic condition
03. To reduce the side effects of some treatments
04. To classify the diseases into their different sub-types
05. To know to what extent we have eradicated the disease
06. To get there in time
07. To find the right medication for each patient
08. To better understand the usual complications

Aims

1. To understand the origin and development of leukaemia and other malignant blood diseases
2. To identify new therapeutic targets and to apply treatments that are increasingly more precise and less aggressive
3. To contribute to finding a cure for these diseases in 100% of cases
Our team
Governing Bodies

The highest governing body is the Board of Trustees, on which are represented: the Josep Carreras Foundation, the Catalan Government Ministry of Business and Knowledge, the Catalan Government Ministry of Health, the Autonomous University of Barcelona (UAB), the University of Barcelona (UB), Badalona Town Council, the Directorate General for Health Research and Planning, the Catalan Institute of Oncology, the Northern Metropolitan Territorial Area Administration, the Catalan Foundation for Research and Innovation, the Hospital Clinic/August Pi i Sunyer Institute for Biomedical Research (Idibaps), the UB Hospital Coordination Committee and the Research Centres of Catalonia Institution Foundation (iCERCA).

Board of Trustees

President
Mr. Josep Carreras Coll
President of the Josep Carreras Foundation and the Josep Carreras Leukaemia Research Institute

First Vice-president
Catalan Government Minister of Business and Knowledge

Second Vice-president
Catalan Government Minister of Health

Members
Rector Autonomous University of Barcelona (UAB)
Rector University of Barcelona (UB)
Mayor of Badalona

Director General for Research, Catalan Government Ministry of Business and Knowledge
Director General for Health Research and Planning
Deputy Director General for Health Research and Planning
Director General Catalan Institute of Oncology
Administrator Northern Metropolitan Territorial Area
Secretary for Universities and Research, Catalan Government Ministry of Business and Knowledge
Director Catalan Foundation for Research and Innovation
Research Director Hospital Clinic - IDIBAPS
Treasurer of the Josep Carreras Leukaemia Foundation
Former Vice-president of the Josep Carreras Leukaemia Foundation
Vice-president of the Josep Carreras Leukaemia Foundation
Administrator of the Josep Carreras Leukaemia Foundation
Vice-rector for Research and Transferability, Autonomous University of Barcelona (UAB)
University of Barcelona Hospital Coordination Committee
Secretary
Director of the Research Centres of Catalonia Institution Foundation (iCERCA)
Delegate Committee

President

Prof. Evarist Feliu,
Coordinator of the ICO-Germans Trias i Pujol Campus

Members

- Director General for Research, Catalan Government Ministry of Business and Knowledge
- Director general for health research and innovation
- Director of the Catalan Health Service
- Director of the Catalan Research Service
- Director iCerca, CERCA Institution, Research Centres of Catalonia
- Administrator, Josep Carreras International Foundation
- University of Barcelona Hospital Coordination Committee Chairman
- Vice-rector for Strategic Projects and Planning, Autonomous University of Barcelona

External Scientific Committee

President

Prof. Lucio Luzzatto, Nigerian Haematology Association

Members

- Prof. Robert Sackstein, Dana-Farber/Harvard Cancer Center Boston
- Prof. Francesco Lococo, Università degli Studi di Roma "Tor Vergata"
- Prof. Alberto Orfao, CIC Centro de Investigación del Cáncer Salamanca
- Prof. Brigitte Schlegelberger, University of Hannover

Internal Scientific Committee

UB-Clínic Campus

Álvaro Urbano Ispizúa (Internal Scientific Committee Coordinator)

Pablo Menéndez (Campus Research Director)

Jordi Esteve Reyner

Armando López Guillermo

Joan Bladé Creixentí

Francisco Cervantes Requena

ICO-GTIP Campus

Evarist Feliu Frasnedo (President of the Delegate Committee)

Francesc Solé (Campus Research Director)

Josep Mª Ribera Santasusana

Lurdes Zamora Plana

José Tomás Navarro Ferrando

Juan Manuel Sancho Cia

Sant Pau Campus

Jordi Sierra

Josep Nomdedeu

Joan Carles Souto

Ramon Mangues

Carol Moreno
Organisational chart

Board of Trustees

Delegation Committee

Management

Internal Scientific Committee

Scientific Director

Scientific coordinator
Campus Clinic UB
Research director
Campus Clinic UB

Scientific coordinator
Campus ICO/GTIP UAB
Research director
Campus ICO/GTIP UAB

Scientific coordinator
Campus Sant Pau UAB
Research director
Campus Sant Pau UAB

AL: Acute leukemias
CLPD: Chronic Lymphoproliferative Disorders
CMN: Chronic Myeloproliferative Neoplasms
MG: Monoclonal Gammapathies
MDS: Myelodysplastic Syndromes
HM&C: Hematological Malignancies and Coagulation
CAPT: Complications Associated with Therapeutic Processes
HSCT & CT: Haematopoietic Stem Cell Transplant and Cell Therapy
ER: Epidemiological Research
CRSU: Clinical Research Support Unit

Projects office
Innovation office
Financial administration
Human resources
General services
Information technology
Communication

Technology platforms
Microarrays
Fluidigm
Cytogenetics
Biological samples collection
Scientific Directors

Dr Jordi Esteve
Scientific coordinator
Campus Clinic UB

Dr Josep Maria Ribera
Scientific coordinator
ICO/GTIP UAB

Dr Jordi Sierra
Scientific coordinator
Campus Sant Pau UAB

Dr Pablo Menéndez
Research director
Campus Clinic UB

Dr Francesc Solé
Research director
ICO/GTIP UAB

Group Leaders

Acute Lymphoblastic Leukaemia (ALL), Josep María Ribera
Barcelona Endothelium Team (BET), Enric Carreras
Chromatin, Metabolism and Cell Fate (CMCF), Marcus Buschbeck
Endocrine Regulatory Genomics (ERG), Lorenzo Pasquali
Functional Cytomics (FC), Jordi Petriz
Genetics and Epigenetics in Myeloid Neoplasms (GEMN), Lurdes Zamora and Blanca Xicoy
Immunohematology and Glycobiology (IG), Fumiichiro Yamamoto
Iron Metabolism: Regulation and Diseases (IMRD), Mayka Sanchez
Leukaemia Stem Cell Group (LSCG), Ruth Muñoz Risueño
Lymphoid Neoplasms (LN), J Tomás Navarro and J Manuel Sancho
Multiple Myeloma Group (MMG), Albert Oriol and Joan Bladé
Myelodysplastic Syndromes (MS), Francesc Solé
Regulatory Genomics (RG), Tanya Vavouri
Stem Cells, Mesenchymal Cancer and Development (SCMCD), Pablo Menéndez
Hematopoietic Stem Cell Transplantation (HSCT), Álvaro Urbano
Red Blood Cell Defects and Hematopoietic Disorders Research Group (RBCDHD), Joan Lluis Vives
3D Chromatin Organization (3DCO), Biola M Javierre
Acute Myeloid Leukaemia (AML), Jordi Sierra
Oncogenesis and Antitumor Drug Group (OADG), Ramón Mangues
CART’s Cell Therapy (CCT), Javier Briones and Álvaro Urbano
Human Resources

Linked with hospital

Batlle, Montse. Post doc
Cabezon, Marta. Post doc
Cisneros, Adela. Pre doc
Feliu, Evarist. Director
Ferra, Christelle. LR
Granada, Isabel. Post doc
Grau, Javier. Post doc
Junca, Jordi. Post doc
Marce, Silvia. Post doc
Milla, Fuensanta. Post doc
Navarro, Tomàs. LR
Oriol, Albert. LR
Ribera, Josep Maria. LR
Rodriguez, Inés. Pre doc
Ruiz, Neus. Pre doc
Sancho, Juanma. LR
Vives, Susana. Pre doc
Xandri, Marisol. Pre doc
Xicoy, Blanca. LR
Zamora, Lurdes. LR

Linked with hospital

Blade, Joan. LR
Esteve, Jordi. LR
Larrea, Carlos. Post doc
Urbano, Alvaro. Director

Linked with hospital

Barata, Ana. Post doc
Briones, Javier. LR
Mangues, Ramon. LR
Moreno, Carol. LR
Nomdedeu, Josep. LR
Pratcorona, Marta. Post doc
Sierra, Jordi. Director

IJC Germans Trias
ICO-UAB

IJC Clínic-UB

IJC Sant Pau
Human Resources

<table>
<thead>
<tr>
<th>Role</th>
<th>Germans Trias UAB</th>
<th>Clínic UB</th>
<th>Sant Pau UAB</th>
<th>Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead researchers</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-doctoral researchers</td>
<td>9</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-doctoral researchers</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support staff</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Management and administration staff</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>24</td>
</tr>
</tbody>
</table>

Staff professionally linked with the IJC

<table>
<thead>
<tr>
<th></th>
<th>IJC ICO</th>
<th>IJC</th>
<th>IJC Sant Pau UAB</th>
<th>IJC Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>34</td>
<td>22</td>
<td>3</td>
<td>24</td>
</tr>
</tbody>
</table>

Staff professionally linked with the Hospital

<table>
<thead>
<tr>
<th></th>
<th>IJC ICO</th>
<th>IJC</th>
<th>IJC Sant Pau UAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>30</td>
<td>15</td>
<td>19</td>
</tr>
</tbody>
</table>

7 Staff linked to the University

Breakdown of Staff by Type

- **Academic staff**: 64%
- **Non-academic staff**: 36%

Breakdown of Staff by Nationality

- American
- Argentine
- Colombian
- Croatian
- French
- German
- Greek
- Irish
- Italian
- Japanese
- Paraguayan
- Portuguese
- Russian

- 29%
At the three hospitals where the IJC has a presence there has always been a great willingness to participate in clinical research. And there are clinics with a very considerable background in basic sciences. Integration, in this respect, must therefore not be just a question of maintaining present levels, but of increasing them in order to enhance the added value it represents in both the health sciences and in clinical practice.
Scientific activity
Lines of research

Vertical lines
1. Acute leukaemias
2. Lymphoproliferative disorders
3. Myeloproliferative neoplasms
4. Monoclonal gammopathies
5. Myelodysplastic syndromes
6. Erythropathology & haematopoiesis disorders. Rare anaemias

Horizontal lines
7. Malignant haemopathies & coagulation
8. Complications associated with therapeutic procedures
9. Transplant of haematopoietic progenitors & cell therapy
10. Epidemiological research
11. Clinical research
12. Basic research

IJC

GermansTrías

ICO

UB

Sant Pau

UAB

ALL

MDS

CMPN

NHL ± HIV

MM

CLL

Fe and Cancer

Chromatin

Rare anaemias

Glycosilation

Cytomics

AML

NHL

HSCT

CLL

Thrombosis and Cancer

MM

Animal models: AML, DLBCL, CARTs

IJC

Clinic

UB

Stem Cells

ALL infant

AML

HSCT

NHL

MM

MDS

CLL

CARTs

2017 Scientific Report
Lines of research

Acute Lymphoblastic Leukaemia (ALL)
Our research is focused on Acute Lymphoblastic Leukaemia (ALL) disease, including B-cell precursor and T-precursor ALL. We want to resolve questions that require a full range of research from from basic to clinical. We aim to provide the physician with new tools, by using basic research data that will have an impact on healthcare, in order to improve survival rates in patients with this type of leukaemia.
José María Ribera, Group Leader

Barcelona Endothelium Team (BET)
The Barcelona Endothelium Team (BET) is a research group that has dedicated many years to the study of the endothelium and endothelial damage in various pathologies. One of our most productive lines is devoted to the characterization of endothelial damage in the context of both autologous and allogeneic hematopoietic stem cell transplantation (HSCT). In this framework, we are deepening our knowledge of the mechanisms involved in endothelial dysfunction, the role of the endothelium in the development of some complications observed after HSCT, and the search of pharmaceutical agents that could protect the endothelia and consequently prevent these complications.
Enric Carreras, Group Leader

Chromatin, Metabolism and Cell Fate (CMCF)
Epigenetic information is written in chromatin. But how exactly do epigenetic mechanisms operate on the molecular level? How do chromatin alterations contribute to cell fate transitions? How does the environment influence these processes? And how does the metabolic state of a cell impact on its chromatin structure and its epigenetic memory?
These are questions we address in the lab. Studying stem cells and cancer we focus on molecular aspects of epigenic regulation and on the question whether we can translate this knowledge into diagnostic and therapeutic tools for the management of diseases such as Leukaemia and myelodysplastic syndrome.
Marcus Buschbeck, Group Leader

Endocrine Regulatory Genomics (ERG)
The endocrine system consists of a collection of distinct cell identities organized in tissues and shaped into functional organs. These highly specialized tissues ensure the physiological equilibrium of an organism and its possibility, throughout life, to interact with the environment.
How do these cell populations preserve their identity? Which molecular mechanisms are required to maintain their phenotype stable for decades? How are gene regulatory networks altered in pathological conditions?
Our group combines molecular genetics and bioinformatic approaches to understand the regulatory mechanisms that control function and cell fate of the endocrine tissues central to diabetes.
Our group is also contributing to the insulin-producing beta-cells regulatory genomics by maintaining and developing the “islet regulome browser” a web tool that allows the visualization of different classes of regulatory elements, together with enhancer clusters, transcription factor binding sites, and binding motifs in human pancreatic islets.
Lorenzo Pasquali, Group Leader

Functional Cytomics (FC)
An important and challenging problem in Leukaemia research is the limited ability for many laboratories to perform functional analyses of primary patient cells. In order to increase our understanding of the biology of human leukemic malignancies, we perform advanced experimentation using living-cell systems. Functional information extracted from single-cell analysis, provides crucial data to understand cell-to-cell heterogeneity. By enabling functional cytomics, we are able to evaluate the state of patients with Leukaemia as well as to examine the changes that occur in the accumulation of drugs into the cells over time. The Functional Cytomics Group is mainly focused in the basic mechanisms that regulate CD34+ and CD34- Side Population stem cells. Stem cells reside in most of tissues in a quiescent state, but rapidly become activated to both repair and regenerate the adjacent tissues. We are studying several genes involved in different aspects of stem cell activation, including some that encode for ABC multidrug resistance transporters, and others that regulate self-renewal and differentiation.
Jordi Petriz, Group Leader

Genetics and Epigenetics in Myeloid Neoplasms (GEMN)
Genetic profiling for hematological malignancies means chasing a moving target. Only few years ago, leukaemias were stratified based on karyotype abnormalities. However, in recent years the knowledge of molecular genetics in haematology has increased significantly, something that offers new clinical opportunities. It has now been shown that gene expression, mutations and other genetic and epigenetic abnormalities also have diagnostic, prognostic and therapeutic implications. The aim of our group is to apply our research into three distinct haematological diseases: chronic myelomonocytic leukaemia, myelodysplastic syndromes and myeloproliferative neoplasms (PV, ET, PMF and CML), to finding better tools for diagnosis and prognosis stratification and to achieving an individual targeted therapies (personalized medicine).
Lurdes Zamora and Blanca Xicoy, Group Leaders
Immunohematology and Glycobiology (IG)

Blood group ABO system consists of A and B oligosaccharide antigens and the antibodies against those antigens (anti-A and anti-B antibodies, respectively). Matching of ABO blood groups is fundamental for safe blood transfusion. Because A and B antigens may also be expressed on other types of cells than red blood cells, the ABO matching is also important in the transplantation of cells/tissues/organs. Starting from the cloning of the human blood group ABO genes and the elucidation of the allelic basis of the ABO system, we have been investigating ABO genes, the gene-encoded A and B glycosyltransferases, and A and B oligosaccharide antigens, their enzymatic reaction products. We have contributed to science and medicine in a variety of research fields such as molecular genetics, human genetics, population genetics, genotyping, enzymology, biochemistry, glycobiology, hematology, immunology, cellular and developmental biology, forensic science, cancer research, and even in the study of evolution. Fumihiro Yamamoto, Group Leader

Iron Metabolism: Regulation and Diseases (IMRD)

Iron is an essential micronutrient for both benign and neoplastic cells and a tight regulation of its metabolism is crucial for health. Iron deficiency leads to anemia, a major world-wide public health problem, and iron overload increases the oxidative stress of body tissues leading to inflammation, cell death, system organ dysfunction, and cancer. Inherited or acquired iron-related anemias are a subset of heterogeneous diseases, some of them with a poor prognostic and quality of life for the patient and requiring bone marrow transplantation for a complete cure of the disease (i.e. Sideroblastic Anemia non-responsive to pyridoxine, gen SLC25A38). Currently, in the unit Diagnostics in Iron Metabolism Diseases (D•IRON), we perform 21 genetic diagnostics for germ-line and acquired iron-related diseases, including the study of Myelodysplastic Syndrome (MDS) with ring sideroblasts (refractory anemia with sideroblasts ring, RARS, gene SF3B1). The IRP/IRE post-transcriptional regulatory system is a key network controlling cellular iron homeostasis. The iron regulatory proteins (IRP1 and IRP2) can recognize a cis-regulatory mRNA motif termed IRE (iron responsive element), a conserved RNA element located in the untranslated regions (UTR) of mRNAs that encode proteins involved in iron metabolism. Our recent findings suggest that the IRP/IRE regulatory network is wider than previously thought, and involves genes involved in cancer progression and metastasis. Mayka Sanchez, Group Leader

Leukaemia Stem Cell Group (LSCG)

Acute Myeloid leukaemia (AML) is a blood cancer, characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with normal hematopoiesis. Although, remission rates with standard induction chemotherapy in patients with AML range from 50-85% the majority of patients will relapse and succumb to the disease within 5 years. As such, survival rates for the majority of patients with AML have not dramatically changed over the last decades and new therapeutic approaches are required for remission induction and prevention of relapse. Leukaemia stem cells (LSC) are the cell population within the tumor thought to be responsible for the initiation, maintenance and relapse of the Leukaemia. Therefore, development of specific therapies targeted at LSCs holds hope for improvement of survival and quality of life of Leukaemia patients. Ruth Muñoz Riusello, Group Leader

Lymphoid Neoplasms (LN)

Research focuses on the study of clinical aspects and biological mechanisms of aggressive lymphomas, especially in HIV-infected patients. The research lines are: the study of the influence of viruses on the genetic and epigenetic mechanisms of lymphomagenesis and the implication of glycoproteins in the dissemination of lymphomas. Studies include the role of miRNAs in the lymphomagenesis of HIV-related non-Hodgkin’s lymphomas, and the correlation of genetic and epigenetic profiles with the clinical-biological features and the prognosis of aggressive lymphomas. Future projects will focus on the mechanisms of lymphoma dissemination, especially to central nervous system. J Tomás Navarro and J Manuel Sancho, Group Leaders

Multiple Myeloma Group (MMG)

The group is focused on translational research and most specifically in the analysis of the biological processes leading to the development of resistance of myeloma to specific drugs. We are linking biological and clinical research by the study by gene expression profiling and other methods of myeloma and immune cells from patients receiving specific treatments. We expect that type of research will ultimately lead to the understanding of mechanisms by which myeloma cells develop resistance to certain drugs, identify biomarkers to predict the risk of development of resistance and finally develop therapeutic strategies able to prevent the development of chemoresistance.

Our current research project aims to detect gene expression profiling biomarkers in myeloma cells and in normal lymphocytes of patients that predict early progression or long term response to lenalidomide in patients with relapsed multiple myeloma. New focus of interest are to study patient’s immune response to treatment with antibodies anti-PD1 and PDL1 in combination with immunomodulatory drugs. Albert Oriol and Joan Bladé, Group Leaders
Myelodysplastic Syndromes (MS)
MDS are a heterogeneous group of haematological stem cell disorders resulting in bone marrow failure and blood cytopenias. The severity of the disease depends on a variety of biological factors that translate into a spectrum of symptoms with a profound impact on the patient’s quality of life and survival. A third of MDS patients will die after progressing to Acute Myeloid Leukaemia (AML). The remaining two thirds of patients will suffer from a combination of chronic anaemia, recurrent infections and bleeding episodes and will die from complications associated with cytopenias. MDS is one of the most common haematological malignancies of the elderly and its prevalence is increasing. Our research is focused on unravelling the heterogeneity of MDS beyond symptomatic and morphological description. Despite recent scientific advances in the field, there are still no clear disease markers which facilitate diagnosis and prognosis in clinical practice. No single genetic aberration is common to all subtypes or specific to MDS and patients present varying proportions of abnormal cells with different genetic defects. A more detailed knowledge of the genome of leukemic cells will allow us to make more informed medical decisions, to initiate appropriate therapies earlier, to achieve higher probability of successful treatment resulting in better targeted therapies.
Francesc Solé, Research Director

Regulatory Genomics (RG)
Our long-term goal is to understand how gene expression and genome packaging is affected by genetic and epigenetic changes that happen during evolution, development and in disease, in particular cancer. Our research approach is to computationally analyse global datasets in order to understand general mechanisms.
Tanya Vavouri, Group Leader

Stem Cells, Mesenchymal Cancer and Development (SCMCD)
Our lab studies human pluripotent stem cells (hESCs and iPSCs) and human multipotent stem cells (haematopoietic and mesenchymal) derived from different tissue sources in order to understand the intrinsic and extrinsic factors, and developmentally conserved pathways, driving blood endothelium and mesenchymal differentiation. We are also actively involved in modeling t(4;11) MLL-AF4+ Acute Lymphoblastic Leukaemia (with special interest in deciphering the cell-of-origin and cooperating oncogenic events) as well as other hematological malignancies using cord blood-derived HSPCs and hESC/iPSC-derived blood derivatives. In parallel, we are also studying the contribution of MSCs to hematological malignancies and sarcomas.
Pablo Menéndez, Research Director

Hematopoietic Stem Cell Transplantation (HSCT)
Stem cell transplantation, either allogeneic (allo-SCT) or autologous (auto-SCT), is one of the treatment options for patients diagnosed with different types of haematological malignancies. However, this procedure is still associated with complications which decrease the survival of patients. Our main field of research is trying to find options to overcome the problems associated to this procedure including, how to improve the engraftment, how to decrease the morbidity and mortality and how to increase the possible anti-Leukaemia effect mediated either by donor lymphocytes in cases of allo-SCT or by the healthy T cells of the patient in cases of auto-SCT.
Álvaro Urbano-Isipuzia, Campus Coordinator

Red Blood Cell Defects and Hematopoietic Disorders Research Group (RBCDHD)
The main objective of Red blood cell and hematopoietic disorders research group is to understand physiopathological pathways dealing with rare anemias, namely haemoglobinopathies, thalassemias, membranopathies and enzymopathies, as well as defects in erythropoiesis and to develop studies of correlation genotype-phenotype, clinical variation, biomarkers for diagnosis and prognosis of rare anemias.
The group is focussed on two main research lines:
 a) Development of new diagnostic approaches for red blood cell disorders in collaboration with European teams experts on microfluidics and red blood cell physiopathology, including analysis of red blood cell deformability by ektactometry and genetic characterization by gene panels and whole exome sequencing methodologies
 b) Research of physiopathological pathways leading to premature red blood cell removal and/or haemolytic hemolysis.
The group is also part of the coordination team the European Reference Network on Rare Hematological Diseases (ERN-EuroBloodNet), officially recognized by the European Commission in December 2016 as one of the 24 approved ERNs..
Joan Luis Vives Corrons, Group Leader

3D Chromatin Organization (3DCO)
Our group combines cutting-edge experimental and bioinformatics approaches to understand the specific 3D chromatin organization of haematopoietic cells and its alteration in blood cancers. Chromatin interactions are crucial for cellular health due to their main role in genome expression regulation and errors in these interactions give rise to the development of a broad range of diseases including blood cancer. The investigation of these altered 3D structures can help us to improve our knowledge of the tumour process, providing new opportunities for the development of novel treatment approaches and diagnostic strategies.
By studying the physical interactions between gene promoter and regulatory elements we are able to connect blood cancer genetic alterations to putative target genes, prioritizing new disease-candidate genes and pathways, and revealing insights into genomic regulatory mechanisms underlying cancer. The interpretation of non-coding variation will also help us to improve the prediction of patient outcome as well as allowing us to design better and more personalized treatments.
Biola M Javierre, Group Leader
Acute Myeloid Leukaemia (AML)
We design treatment protocols with chemotherapy and hematopoietic progenitor transplants, or just chemotherapy, according to factors of prognosis.
Two decades ago the global survival rate for patients reaching the age of 60 was 15% and now it is between 40% and 50%. Nevertheless, we must continue with research to improve this percentage and to reduce the level of mortality for patients over the age of 60 because, for this group of patients, little progress has been made in recent years. Many patients can not undergo a bone marrow transplant or suffer a relapse, or both.
Further research is required into improving transplantation focusing, above all, on the prevention of infectious complications and the study of graft-versus-host disease, a common, post-transplant complication in which the organism recognises the donor's hematopoietic progenitors as being hostile.
Jordi Sierra, Group Leader

Oncogenesis and Antitumor Drug Group (OADG)
1. Development of animal models with disseminated hematological or solid neoplasias for the molecular study of metastatic cancer stem cells and metastasis development
2. Preclinical development of drug-nanoparticle conjugates and polypeptidic nanoparticles for, CXCR4 receptor-mediated, targeted drug delivery with high selectivity in their tumor uptake and high antimetastatic potency against hematological or solid neoplasias.
3. To carry out a phase 1 clinical assays, after completing preclinical regulatory studies, of the fast selective antimetastatic drug based on as nanoconjugate targeting CXCR4+ metastatic stem cells.
4. Identification of molecular markers predictive of response to targeted nanomedicines that are capable of increasing the precision of oncology therapeutics.
Ramón Mangués, Group Leader

CART’s Cell Therapy (CCT)
A short time ago, some extremely powerful cells, called stem memory T cells, were discovered. These cells are very special and although they are present in less than 1% of the blood, scientists have created mechanisms to create them in larger quantities and with enhanced and longer-lasting anti-cancer potency. If we genetically modify patients’ own such cells through the action of a virus, they can be reintroduced into the patient's body using a technique known as CART, where they act on leukaemia cells until they destroy them.
Javier Briones and Álvaro Urbano, Group Leaders
Capturing competitive grants

€661,229,00
€850,259,00
€1,829,824,00
€333,915,00
€1,834,008,00
€1,592,600,00

2012 2013 2014 2015 2016 2017
National EU/International

Competitive funding granted (€) Non-competitive funding granted (€)
Publications

Number of indexed articles published per year

Cumulative Impact Factor per year
Technology platforms

Cytogenetics platform

The Josep Carreras Leukaemia Research Institute cytogenetics platform is directed by Dr. Francesc Solé. The platform includes the Catalan Institute of Oncology's (ICO) Cytogenetics Laboratory and the 32K Bacterial Artificial Chromosome (BAK) library.

Affymetrix Microarrays Platform

The Affymetrix® Microarrays Platform (AMP) is a service focused on microarray DNA and RNA solutions provided by Affymetrix. The main aim is to find solutions, based on basic research, applied research and diagnosis, that lead towards personalised medicine.

Blood cancer samples

The administration of the collection, processing and storage of blood cancer samples. These samples are stored in a collection called 'Collection of samples from patients with hematologic neoplasms'.

Fluidigm Platform

The Fluidigm platform is used to create integrated fluid circuits (IFCs) which are single-use biochips which automate PCR reactions using the volumes of nanolitres from two samples and reagents to produce consistent results.
Clinical trials are a fundamental part of our research. In this regard, the IJC evaluates treatments, the efficacy of drugs, and the suitability of equipment. It enables new treatments to be tested to prevent, relieve or cure diseases.

The IJC vouches for the transferability of knowledge, and the value of and search for market opportunities, in the broadest terms. As well as being in its own interests, it contributes to society and our country's progress.

Leukos Biotech is born to bring new cures for Acute Myeloid Leukaemia and other haematological malignancies.
Teaching

The IJC provides a high-quality teaching programme for students, scientists, technicians and others with an interest in achieving a solid and up-to-date grounding in the field of leukaemia and malignant blood diseases. The IJC organises a Doctorate in Hematology, a Master's degree in malignant blood diseases and it participates in the teaching for degrees in medicine and biomedicine.

Staff linked to the University
8

Theses read
7

Doctorates being prepared
9
The IJC organises complementary training activities at all levels, from scientific conferences, monthly seminars and technology sessions, to specialised courses.

Training courses
6

Scientific conference
2

Scientific seminars
26

MDS GRUP
Francesc Solé
Francisco Fuster

MPN GROUP
Lurdes Zamora, Blanca Xicoy
Natalia Estrada, Laura Palomo

GLICOLSILATION GROUP
Fumi Yamamoto
Emili Cid

ALL GROUP
JM Ribera
Eulalia Genescà, Jordi Ribera

MYELOMA GROUP
Albert Oriol
Paula Gomez

CLL GROUP
Mª Joao Batista, Christelle Ferra
Maria Joao Baptista

FUNCTIONAL CYTOMICS
Jordi Petriz
Laura Garcia

IRON GROUP
Mayka Sanchez
Jorge Couso, Ana Barque

CHROMATIN GROUP
Marcus Buschbeck
Anna Palau, Sara Alvarez, Jeannine Diesch
<table>
<thead>
<tr>
<th>Date</th>
<th>Hour</th>
<th>Room</th>
<th>Speaker</th>
<th>Host</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/1</td>
<td>15.00</td>
<td>Sala Polivalent</td>
<td>J. M. Fernández-Real</td>
<td>Mayka Sanchez</td>
<td>Biomedical Research Institute of Girona (IDIBGI) CIBERobn Obesity, Hospital of Girona "Dr Josep Trueta" Hierro y eje intestino-cerebro en el desarrollo de diabetes tipo 2</td>
</tr>
<tr>
<td>06/02</td>
<td>15.00</td>
<td>Sala Polivalent</td>
<td>Oscar Molina</td>
<td>Francesc Solé</td>
<td>University of Edingburg Epigenetic maintenance of the centromere for proper chromosome segregation</td>
</tr>
<tr>
<td>17/2</td>
<td>12.00</td>
<td>PMPPC Seminar Room</td>
<td>Yuzuru Ikehara</td>
<td>Fumihiro Yamamoto</td>
<td>Department of Life Science and Biotechnology, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Technology (AIIST), Tsukuba, Japan Establishing de novo carcinogenesis models to develop pancreatic ductal adenocarcinoma (PDAC)</td>
</tr>
<tr>
<td>27/2</td>
<td>15.00</td>
<td>Sala Polivalent</td>
<td>Jose Fernández Piqueras</td>
<td>Eulàlia Genescà</td>
<td>CBM, Madrid Epigenetic and genetic alterations in T-cell Lymphoblastic lymphoma</td>
</tr>
<tr>
<td>10/3DV</td>
<td>11.00</td>
<td>Sala PMPPC</td>
<td>Georg Lenz</td>
<td>Tomás Navarro</td>
<td>Universität Klinikum Münster Novel insights into the molecular pathogenesis of aggressive lymphoma subtypes and their clinical implications</td>
</tr>
<tr>
<td>03/04</td>
<td>15.00</td>
<td>Sala Polivalent</td>
<td>Katharina Jahn</td>
<td>Laura Palomo</td>
<td>Biosystems Science and Engineering, ETH Zurich Advances in understanding tumour evolution through single-cell sequencing</td>
</tr>
<tr>
<td>19/04</td>
<td>15:30</td>
<td>Aula 11 Medicina UB</td>
<td>Christine Harrison</td>
<td>Pablo</td>
<td>Professor of Childhood Cancer Cytogenetics, Newcastle University How about “Chromosome 21: its critical role in childhood leukaemia</td>
</tr>
<tr>
<td>08/05</td>
<td>15.00</td>
<td>Sala Polivalent</td>
<td>Jaroslaw Maciejewski</td>
<td>Kiko solé</td>
<td>Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Differential role of ancestral vs. subclonal mutations in the pathogenesis and prognosis of MDS</td>
</tr>
<tr>
<td>16/05</td>
<td>13.00</td>
<td>Seminar Room PMPPC</td>
<td>Tom Radivojevitch</td>
<td>Cleveland Clinic. Cleveland, USA.</td>
<td>Estimating leukemia risk dynamics after diagnoses of first cancers treated or not with radiation</td>
</tr>
</tbody>
</table>
Courses

Cytogenetics and Molecular Genetics of Myeloid Neoplasms.

Cytogenetics and Molecular Genetics of Myeloid Neoplasms.

Cytogenetics and Molecular Genetics of Myeloid Neoplasms.

Latest advances in acute lymphoblastic leukaemia.
Badalona, 8 and 9 September 2016.
Director: Josep Maria Ribera

IL3-UB. Madrid, 9 November 2016.
Speakers: Francesc Solé/Mar Mallo

Cytogenetics and Molecular Genetics Applied for the study of Hematological Neoplasms

Dates:
15-16 March, 2016
17-18 May, 2016
31 May-1 June, 2016

Venue:
Institut de Recerca Contra la Leucèmia Josep Carreras
Ctra. de Can Ruti, Camí de les Escoles s/n
IMPPC building
08916 Badalona (Barcelona)

Fluorescence in situ hybridization (FISH) applied to the diagnosis of myelodysplastic syndromes and other hematological neoplasms

Dates:
18-19 June
29-30 October
19-20 November

Venue:
Institut de Recerca Contra la Leucèmia Josep Carreras
Ctra. de Can Ruti, Camí de les Escoles s/n
IMPPC building
08916 Badalona (Barcelona)
The IJC makes a great effort to establish continuing cooperation agreements, and it aims to broaden its strategic alliances and agreements with the pharmaceutical industry, as well as other private organisations. At the present time the following institutions are connected with the IJC:
Communication
Communication

The IJC knows that it is of prime importance to tell people about the work we do if we have to strengthen our bonds with society and its citizens. The desire to integrate social corporate responsibility into our management model is closely linked to the organisational values of the Josep Carreras Foundation.

To this end, the IJC has actively participated in scientific dissemination and in the creation of scientific vocations.

IJC has participated also in the Patients’ Day, with the Josep Carreras Foundation, an event that brings together researchers, clinicians, and patients to know more about each other and celebrate the collaborative work to find a cure.

Children’s Tiana town council visit

Patients’ Day

Science week, Badalona town council
Financial data
Annual economic results

In 2017 there was an increase of more than 9% in income from public funds and the provision of services.

With regard to expenses, 60% of the IJC’s outlay corresponds to staffing, with a 14% increase. At this early stage, the evolution of income, expenses, and investments gives a negative result of €573,363.

DECEMBER

<table>
<thead>
<tr>
<th>INCOMES</th>
<th>4,226,863</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTRIBUTIONS FROM THE GENERALITAT</td>
<td>1,466,329</td>
</tr>
<tr>
<td>OTHER TRANSFERS (FIJC)</td>
<td>114,467</td>
</tr>
<tr>
<td>SERVICES</td>
<td>178,856</td>
</tr>
<tr>
<td>PROJECT IMPLEMENTATION</td>
<td>2,399,008</td>
</tr>
<tr>
<td>OVERHEADS</td>
<td>68,203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATIONAL EXPENSES</th>
<th>4,190,797</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAFFING COSTS</td>
<td>833,060</td>
</tr>
<tr>
<td>INFORMATION TECHNOLOGIES SERVICES</td>
<td>45,958</td>
</tr>
<tr>
<td>COMMUNICATION</td>
<td>505</td>
</tr>
<tr>
<td>BUILDING MAINTENANCE</td>
<td>74,496</td>
</tr>
<tr>
<td>LABORATORIES MAINTENANCE</td>
<td>99,563</td>
</tr>
<tr>
<td>RESEARCH SUPPORT</td>
<td>7,093</td>
</tr>
<tr>
<td>PROJECT IMPLEMENTATION</td>
<td>2,499,009</td>
</tr>
<tr>
<td>SCIENTIFIC-TECHNICAL SERVICES (Platforms)</td>
<td>119,101</td>
</tr>
<tr>
<td>BIOBANK</td>
<td>11,053</td>
</tr>
<tr>
<td>MANAGEMENT SUPPORT SERVICES</td>
<td>100,601</td>
</tr>
<tr>
<td>OTHER</td>
<td>347,908</td>
</tr>
<tr>
<td>VAT PRORATA</td>
<td>38,017</td>
</tr>
<tr>
<td>SUBSIDY REBATE</td>
<td>14,436</td>
</tr>
</tbody>
</table>

RESULT OF THE ACTIVITY 36,065
OPERATING INCOME 36,065
FINANCIAL PERFORMANCE -36,065
RESULT (BEFORE DEPRECIATION) 0
RESULT -573,363

2017 Scientific Report
Upcoming challenges
The European Charter is a set of general principles and requirements to promote equal rights and duties for individual researchers throughout Europe, to guarantee attractive research careers, and to improve employment and working conditions for European researchers.

On the other hand, the Code of Conduct aims to improve transparent and merit-based recruitment and appraisal procedures.

The IJC wants to implement both of them in 2018.

The Josep Carreras Leukaemia Research Institute needs a Scientific first class researcher with high relevance in biomedical and clinical research to captain the whole research pf the Institute as a whole, from basic to translational scientific production.

In 2018 the IJC will open the position to start out this election, that meets the Strategic Plan 2018-2022 objectives.
Annex