Publicaciones científicas

Se han encontrado 111 publicaciones con los criterios indicados.
Rossi M, Meggendorfer M, Zampini M, Tettamanti M, Riva E, Travaglino E, Bersanelli M, Mandelli S, Galbussera AA, Mosca E, Saba E, Chiereghin C, Manes N, Milanesi C, Ubezio M, Morabito L, Peano C, Soldà G, Asselta R, Duga S, Selmi C, De Santis M, Malik K, Maggioni G, Bicchieri ME, Campagna A, Tentori CA, Russo A, Civilini E, Allavena P, Piazza R, Corrao G, Sala C, Termanini A, Giordano L, Detoma P, Malabaila A, Sala L, Rosso S, Zanetti R, Saitta C, Riva E, Condorelli G, Passamonti F, Santoro A, Sole F, Platzbecker U, Fenaux P, Bolli N, Castellani G, Kern W, Vassiliou G, Haferlach T, Lucca U, Della Porta MG

Clinical relevance of clonal hematopoiesis in the oldest-old population.

Blood 14 Jun 2021, . Epub 14 Jun 2021
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased risk of cancers and inflammation-related diseases. This phenomenon becomes very common in oldest-old individuals, in whom the implications of CHIP are not well defined. We performed a mutational screening in 1794 oldest-old individuals enrolled in two population-based studies and investigate the relationships between CHIP and associated pathologies. Clonal mutations were observed in one third of oldest-old individuals and were associated with reduced survival. Mutations in JAK2 and splicing genes, multiple mutations (DNMT3A, TET2, ASXL1 with additional genetic lesions) and variant allele frequency ≥0.096 had positive predictive value for myeloid neoplasms. Combining mutation profiles with abnormalities in red blood cell indices improved the ability of myeloid neoplasm prediction. On this basis, we defined a predictive model that identifies 3 risk groups with different probabilities of developing myeloid neoplasms. Mutations in DNMT3A, TET2, ASXL1 or JAK2 (most occurring as single lesion) were associated with coronary heart disease and rheumatoid arthritis. Cytopenia was a common finding in oldest-old population, the underlying cause remaining unexplained in 30% of cases. Among individuals with unexplained cytopenia, the presence of highly-specific mutation patterns was associated with myelodysplastic-like phenotype and a probability of survival comparable to that of myeloid neoplasms. Accordingly, 7.5% of oldest-old subjects with cytopenia had presumptive evidence of myeloid neoplasm. In conclusion, specific mutational patterns define different risk of developing myeloid neoplasms vs. inflammatory-associated diseases in oldest-old population. In individuals with unexplained cytopenia, mutational status may identify those subjects with presumptive evidence of myeloid neoplasms.
Más información
Palomo L, Santiago-Vacas E, Pascual-Figal D, Fuster JJ, Solé F, Bayés-Genís A

Prevalence and characteristics of clonal hematopoiesis in heart failure.

Rev Esp Cardiol (Engl Ed) 9 Jun 2021, . Epub 9 Jun 2021
No abstract available.
Más información
Genescà E, Morgades M, González-Gil C, Fuster-Tormo F, Haferlach C, Meggendorfer M, Montesinos P, Barba P, Gil C, Coll R, Moreno MJ, Martínez-Carballeira D, García-Cadenas I, Vives S, Ribera J, González-Campos J, Díaz-Beya M, Mercadal S, Artola MT, Cladera A, Tormo M, Bermúdez A, Vall-Llovera F, Martínez-Sánchez P, Amigo ML, Monsalvo S, Novo A, Cervera M, García-Guiñon A, Ciudad J, Cervera J, Hernández-Rivas JM, Granada I, Haferlach T, Orfao A, Solé F, Ribera JM

Adverse prognostic impact of complex karyotype (≥3 cytogenetic alterations) in adult T-cell acute lymphoblastic leukemia (T-ALL).

Leuk Res 8 Jun 2021, 109 106612. Epub 8 Jun 2021
The potential prognostic value of conventional karyotyping in adult T-cell acute lymphoblastic leukemia (T-ALL) remains an open question. We hypothesized that a modified cytogenetic classification, based on the number and type of cytogenetic abnormalities, would allow the identification of high-risk adult T-ALL patients. Complex karyotype defined by the presence of ≥3 cytogenetic alterations identified T-ALL patients with poor prognosis in this study. Karyotypes with ≥3 abnormalities accounted for 16 % (22/139) of all evaluable karyotypes, corresponding to the largest poor prognosis cytogenetic subgroup of T-ALL identified so far. Patients carrying karyotypes with ≥3 cytogenetic alterations showed a significantly inferior response to therapy, and a poor outcome in terms of event-free survival (EFS), overall survival (OS) and cumulative incidence of relapse (CIR), independently of other baseline characteristics and the end-induction minimal residual disease (MRD) level. Additional molecular analyses of patients carrying ≥3 cytogenetic alterations showed a unique molecular profile that could contribute to understand the underlying molecular mechanisms of resistance and to evaluate novel targeted therapies (e.g. IL7R directed) with potential impact on outcome of adult T-ALL patients.
Más información
Palomo L, Acha P, Solé F

Genetic Aspects of Myelodysplastic/Myeloproliferative Neoplasms.

Cancers (Basel) 27 Abr 2021, 13 (9) .
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are myeloid neoplasms characterized by the presentation of overlapping features from both myelodysplastic syndromes and myeloproliferative neoplasms. Although the classification of MDS/MPN relies largely on clinical features and peripheral blood and bone marrow morphology, studies have demonstrated that a large proportion of patients (~90%) with this disease harbor somatic mutations in a group of genes that are common across myeloid neoplasms. These mutations play a role in the clinical heterogeneity of these diseases and their clinical evolution. Nevertheless, none of them is specific to MDS/MPN and current diagnostic criteria do not include molecular data. Even when such alterations can be helpful for differential diagnosis, they should not be used alone as proof of neoplasia because some of these mutations may also occur in healthy older people. Here, we intend to review the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of the patients.
Más información
Alessandro Liquori, Iván Lesende, Laura Palomo, Gayane Avetisyan, Mariam Ibáñez, Elisa González-Romero, Mireia Boluda-Navarro, Mireya Morote-Faubel, Cristian Garcia-Ruiz, Cristina Martinez-Valiente, Marta Santiago-Balsera, Inés Gomez-Seguí, Alejandra Sanjuan-Pla, Miguel A. Sanz, Guillermo Sanz, Francesc Solé, Esperanza Such, José Cervera

A Single-Run Next-Generation Sequencing (NGS) Assay for the Simultaneous Detection of Both Gene Mutations and Large Chromosomal Abnormalities in Patients with Myelodysplastic Syndromes (MDS) and Related Myeloid Neoplasms

Cancers 2021, 13(8), 1947 18 Abr 2021, .
Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms are clonal disorders that share most of their cytogenetic and molecular alterations. Despite the increased knowledge of the prognostic importance of genetics in these malignancies, next-generation sequencing (NGS) has not been incorporated into clinical practice in a validated manner, and the conventional karyotype remains mandatory in the evaluation of suspected cases. However, non-informative cytogenetics might lead to an inadequate estimation of the prognostic risk. Here, we present a novel targeted NGS-based assay for the simultaneous detection of all the clinically relevant genetic alterations associated with these disorders. We validated this platform in a large cohort of patients by performing a one-to-one comparison with the lesions from karyotype and single-nucleotide polymorphism (SNP) arrays. Our strategy demonstrated an approximately 97% concordance with standard clinical assays, showing sensitivity at least equivalent to that of SNP arrays and higher than that of conventional cytogenetics. In addition, this NGS assay was able to identify both copy-neutral loss of heterozygosity events distributed genome-wide and copy number alterations, as well as somatic mutations within significant driver genes. In summary, we show a novel NGS platform that represents a significant improvement to current strategies in defining diagnosis and risk stratification of patients with MDS and myeloid-related disorders.
Pamela Acha, Laura Palomo, Francisco Fuster-Tormo, Bianca Xicoy, Mar Mallo, Ana Manzanares, Javier Grau, Silvia Marcé, Isabel Granada, Marta Rodríguez-Luaces, María Díez-Campelo, Lurdes Zamora, Francesc Solé

Analysis of Intratumoral Heterogeneity in Myelodysplastic Syndromes with Isolated del(5q) Using a Single Cell Approach

Cancers 2021, 13(4), 841 17 Feb 2021, .
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological diseases. Among them, the most well characterized subtype is MDS with isolated chromosome 5q deletion (MDS del(5q)), which is the only one defined by a cytogenetic abnormality that makes these patients candidates to be treated with lenalidomide. During the last decade, single cell (SC) analysis has emerged as a powerful tool to decipher clonal architecture and to further understand cancer and other diseases at higher resolution level compared to bulk sequencing techniques. In this study, a SC approach was used to analyze intratumoral heterogeneity in four patients with MDS del(5q). Single CD34+CD117+CD45+CD19- bone marrow hematopoietic stem progenitor cells were isolated using the C1 system (Fluidigm) from diagnosis or before receiving any treatment and from available follow-up samples. Selected somatic alterations were further analyzed in SC by high-throughput qPCR (Biomark HD, Fluidigm) using specific TaqMan assays. A median of 175 cells per sample were analyzed. Inferred clonal architectures were relatively simple and either linear or branching. Similar to previous studies based on bulk sequencing to infer clonal architecture, we were able to observe that an ancestral event in one patient can appear as a secondary hit in another one, thus reflecting the high intratumoral heterogeneity in MDS del(5q) and the importance of patient-specific molecular characterization.
Matteo Bersanelli, Erica Travaglino, Manja Meggendorfer, Tommaso Matteuzzi, Claudia Sala, Ettore Mosca, Chiara Chiereghin, Noemi Di Nanni, Matteo Gnocchi, Matteo Zampini, Marianna Rossi, Giulia Maggioni, Alberto Termanini, Emanuele Angelucci, Massimo Bernardi, Lorenza Borin, Benedetto Bruno, Francesca Bonifazi, Valeria Santini, Andrea Bacigalupo, Maria Teresa Voso, Esther Oliva, Marta Riva, Marta Ubezio, Lucio Morabito, Alessia Campagna, Claudia Saitta, Victor Savevski, Enrico Giampieri, Daniel Remondini, Francesco Passamonti, Fabio Cicer, Niccolò Bolli, Alessandro Rambaldi, Wolfgang Kern, Shahram Kordasti, Francesc Sole, Laura Palomo, Guillermo Sanz, Armando Santoro, Uwe Platzbecker, Pierre Fenaux, Luciano Milanesi, Torsten Haferlach, Gastone Castellani, Matteo G Della Porta

Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes

J Clin Oncol . 2021 Feb 4;JCO2001659. 4 Feb 2021, .
Purpose: Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. Methods: We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed. Results: We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations (SF3B1, SRSF2, and U2AF1) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with SF3B1 mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within SF3B1- and SRSF2-related MDS. MDS with complex karyotype and/or TP53 gene abnormalities and MDS with acute leukemia-like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of TP53 mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features. Conclusion: Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis.
Más información
Pamela Acha, Montserrat Hoyos, Marta Pratcorona, Francisco Fuster-Tormo, Laura Palomo, Esther Ortega, Lurdes Zamora, Susana Vives, Isabel Granada, Julia Montoro, Antoni Garcia, Montserrat Arnan, Marta Cervera, Marta Canet, David Gallardo, Leonor Arenillas, Jordi Esteve, Joan Baragay, Olga Salamero, Cristina Motlló, Xavier Ortín, Jordi Sierra, Francesc Solé

Genetic characterization of acute myeloid leukemia patients with mutations in IDH1/2 genes

Leuk Res . 2021 Jan 11;101:106492. 11 Ene 2021, .
Highlights • IDH1/2 cases account for 23% of the studied cohort. • Mutual exclusivity was confirmed for IDH1 and IDH2 mutations. • IDH1 (86%) and IDH2 (89%) mutations frequently constitute an ancestral event.
Más información
Adema V, Khouri J, Ni Y, Rogers HJ, Kerr CM, Awada H, Nagata Y, Kuzmanovic T, Advani AS, Gerds AT, Mukherjee S, Nazha A, Saunthararajah Y, Madanat Y, Patel BJ, Solé F, Nawrocki ST, Carew JS, Sekeres MA, Maciejewski JP, Visconte V, Carraway HE.

Analysis of distinct SF3B1 hotspot mutations in relation to clinical phenotypes and response to therapy in myeloid neoplasia

Leuk Lymphoma . 2020 Nov 3;1-4 3 Nov 2020, .
No abstract available
Más información
Palomo L, Meggendorfer M, Hutter S, Twardziok S, Ademà V, Fuhrmann I, Fuster-Tormo F, Xicoy B, Zamora L, Acha P, Kerr CM, Kern W, Maciejewski JP, Sole, F.

Molecular landscape and clonal architecture of adult myelodysplastic/myeloproliferative neoplasms

Blood . 2020 Oct 15;136(16):1851-1862 15 Oct 2020, .
More than 90% of patients with myelodysplastic/myeloproliferative neoplasms (MDSs/MPNs) harbor somatic mutations in myeloid-related genes, but still, current diagnostic criteria do not include molecular data. We performed genome-wide sequencing techniques to characterize the mutational landscape of a large and clinically well-characterized cohort including 367 adults with MDS/MPN subtypes, including chronic myelomonocytic leukemia (CMML; n = 119), atypical chronic myeloid leukemia (aCML; n = 71), MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T; n = 71), and MDS/MPN unclassifiable (MDS/MPN-U; n = 106). A total of 30 genes were recurrently mutated in ≥3% of the cohort. Distribution of recurrently mutated genes and clonal architecture differed among MDS/MPN subtypes. Statistical analysis revealed significant correlations between recurrently mutated genes, as well as genotype-phenotype associations. We identified specific gene combinations that were associated with distinct MDS/MPN subtypes and that were mutually exclusive with most of the other MDSs/MPNs (eg, TET2-SRSF2 in CMML, ASXL1-SETBP1 in aCML, and SF3B1-JAK2 in MDS/MPN-RS-T). Patients with MDS/MPN-U were the most heterogeneous and displayed different molecular profiles that mimicked the ones observed in other MDS/MPN subtypes and that had an impact on the outcome of the patients. Specific gene mutations also had an impact on the outcome of the different MDS/MPN subtypes, which may be relevant for clinical decision-making. Overall, the results of this study help to elucidate the heterogeneity found in these neoplasms, which can be of use in the clinical setting of MDS/MPN.
Más información