Research publications

Found 6 publicacions matching the indicated search criteria.
Clara Alsinet, Maria Nascimento Primo, Valentina Lorenzi, Erica Bello, Iva Kelava, Carla P. Jones, Roser Vilarrasa-Blasi, Carmen Sancho-Serra, Andrew J. Knights, Jong-Eun Park, Beata S. Wyspianska, Gosia Trynka, David F. Tough, Andrew Bassett, Daniel J. Gaffney, Damiana Alvarez-Errico, Roser Vento-Tormo

Robust temporal map of human in vitro myelopoiesis using single-cell genomics

Nat Commun 13, 2885 (2022). 24 May 2022, .
Myeloid cells are central to homeostasis and immunity. Characterising in vitro myelopoiesis protocols is imperative for their use in research, immunotherapies, and understanding human myelopoiesis. Here, we generate a >470K cells molecular map of human induced pluripotent stem cells (iPSC) differentiation into macrophages. Integration with in vivo single-cell atlases shows in vitro differentiation recapitulates features of yolk sac hematopoiesis, before definitive hematopoietic stem cells (HSC) emerge. The diversity of myeloid cells generated, including mast cells and monocytes, suggests that HSC-independent hematopoiesis can produce multiple myeloid lineages. We uncover poorly described myeloid progenitors and conservation between in vivo and in vitro regulatory programs. Additionally, we develop a protocol to produce iPSC-derived dendritic cells (DC) resembling cDC2. Using CRISPR/Cas9 knock-outs, we validate the effects of key transcription factors in macrophage and DC ontogeny. This roadmap of myeloid differentiation is an important resource for investigating human fetal hematopoiesis and new therapeutic opportunities.
Ferrer G, Álvarez-Errico D, Esteller M

Biological and Molecular Factors Predicting Response to Adoptive Cell Therapies in Cancer.

J Natl Cancer Inst 19 Apr 2022, . Epub 19 Apr 2022
Adoptive cell therapy (ACT) constitutes a major breakthrough in cancer management that has expanded in the past years due to impressive results showing durable and even curative responses for some patients with hematological malignancies. ACT leverages antigen specificity and cytotoxic mechanisms of the immune system, particularly relying on the patient´s T lymphocytes to target and eliminate malignant cells. This personalized therapeutic approach exemplifies the success of the joint effort of basic, translational and clinical researchers that has turned the patient´s immune system into a great ally in the search for a cancer cure. Adoptive cell therapies are constantly improving to reach a maximum beneficial clinical response. Despite being very promising therapeutic options for certain types of cancers, mainly melanoma and hematological malignancies, these individualized treatments still present several shortcomings including elevated costs, technical challenges, management of adverse side effects and a limited population of responder patients. Thus, it is crucial to discover and develop reliable and robust biomarkers to specifically and sensitively pinpoint the patients that will benefit the most from ACT, as well as those that are at higher risk of developing potentially serious toxicities. Although unique readouts of infused cell therapy success have not yet been identified, certain characteristics from the adoptive cells, the tumor and/or the tumor microenvironment have been recognized to predict patients' outcome upon ACT. Here, we comment on the importance of biomarkers to predict ACT chances of success to maximize efficacy of treatments and increase patients' survival.
More information
Garcia-Prieto CA, Álvarez-Errico D, Musulen E, Bueno-Costa A, N Vazquez B, Vaquero A, Esteller M

Validation of a DNA methylation microarray for 285,000 CpG sites in the mouse genome.

Epigenetics 17 Mar 2022, . Epub 17 Mar 2022
The mouse has been extensively used as the model organism in many studies to characterize biological pathways, drug effects and to mimic human diseases. The similar DNA sequences between both species facilitates these type of experiments. However, much less is known about the mouse epigenome, particularly for DNA methylation. Progress in delivering mouse DNA methylomes has been slow due to the currently available time-consuming and expensive methodologies. Following the great acceptance of the human DNA methylation microarrays, we have herein validated a newly developed DNA methylation microarray (Infinium Mouse Methylation BeadChip) that interrogates 280,754 unique CpG sites within the mouse genome. The CpGs included in the platform cover CpG islands, shores, shelfs and open sea sequences; and loci surrounding transcription start sites and gene bodies. From the functional standpoint, mouse ENCODE representative DNase hypersensitivity sites (rDHSs) and candidate cis-Regulatory Elements (cCREs) are also included. Herein, we show that the profiled mouse DNA methylation microarray provides reliable values among technical replicates; matched results from fresh frozen versus formalin-fixed samples; detects hemimethylated X-chromosome and imprinted CpG sites; and is able to determine CpG methylation changes in mouse cell lines treated with a DNA demethylating agent or upon genetic disruption of a DNA methyltransferase. Most important, using unsupervised hierarchical clustering and t-SNE approaches, the platform is able to classify all types of normal mouse tissues and organs. These data underscore the great features of the assessed microarray to obtain comprehensive DNA methylation profiles of the mouse genome.
More information
Morante-Palacios O, Lorente-Sorolla C, Ciudad L, Calafell-Segura J, Garcia-Gomez A, Català-Moll F, Ruiz-Sanmartín A, Martínez-Gallo M, Ferrer R, Ruiz-Rodriguez JC, Álvarez-Errico D, Ballestar E

JAK2-STAT Epigenetically Regulates Tolerized Genes in Monocytes in the First Encounter With Gram-Negative Bacterial Endotoxins in Sepsis

Front. Immunol. 12:734652. 17 Nov 2021, . Epub 17 Nov 2021
Microbial challenges, such as widespread bacterial infection in sepsis, induce endotoxin tolerance, a state of hyporesponsiveness to subsequent infections. The participation of DNA methylation in this process is poorly known. In this study, we perform integrated analysis of DNA methylation and transcriptional changes following in vitro exposure to gram-negative bacterial lipopolysaccharide, together with analysis of ex vivo monocytes from septic patients. We identify TET2-mediated demethylation and transcriptional activation of inflammation-related genes that is specific to toll-like receptor stimulation. Changes also involve phosphorylation of STAT1, STAT3 and STAT5, elements of the JAK2 pathway. JAK2 pathway inhibition impairs the activation of tolerized genes on the first encounter with lipopolysaccharide. We then confirm the implication of the JAK2-STAT pathway in the aberrant DNA methylome of patients with sepsis caused by gram-negative bacteria. Finally, JAK2 inhibition in monocytes partially recapitulates the expression changes produced in the immunosuppressive cellular state acquired by monocytes from gram-negative sepsis, as described by single cell-RNA-sequencing. Our study evidences both the crucial role the JAK2-STAT pathway in epigenetic regulation and initial response of the tolerized genes to gram-negative bacterial endotoxins and provides a pharmacological target to prevent exacerbated responses.
Ignacio Campillo-Marcosa, Damiana Alvarez-Errico, Regina A. Alandes, Elisabetta Mereu, Manel Esteller

Single-Cell Technologies and Analyses in Hematopoiesis and Hematological Malignancies

Experimental Hematology(2021), 9 May 2021, .
In recent years, single-cell technologies have emerged as breakthrough techniques that enable the characterization of hematopoietic cell populations of normal and malignant tissue samples and will be combined in the near future with bulk technologies, currently used in clinical practice, in order to improve diagnosis, prognosis and search for novel molecular targets. These single-cell methods have the advantage of not masking cell-to-cell variation features and involve the study of genetic, epigenetic, transcriptional and proteomic landscapes from a single-cell perspective. Latest advances in this field have enabled the development of novel strategies that significantly increase both sensitivity and high-throughput. In this review, we emphasize emerging techniques aimed at assessing individual or multi-omic parameters at single-cell resolution, and analyze how these technologies have helped us understand hematopoietic variability and identify unknown and/or rare subpopulations. We also summarize the impact of these single-cell profiling strategies on the characterization of cell diversity within the tumor, and the clonal evolution of multiple hematological malignancies in samples from untreated and treated patients, which provide valuable information for diagnosis, prognosis and future treatments, and explain why current therapies may fail. However, despite these improvements, new challenges lie ahead.
Manuel Castro de Moura, Veronica Davalos, Laura Planas-Serra, Damiana Alvarez-Errico, Carles Arribas, Montserrat Ruiz, Sergio Aguilera-Albesa, Jesus Troya, Juan Valencia-Ramos, Valentina Velez-Santamaria, Agustí Rodríguez-Palmero, Judit Villar-Garcia, Juan P. Horcajada, Sergiu Albu, Carlos Casasnovas, Anna Rull, Laia Reverte, Beatriz Dietl, David Dalmau, Maria J. Arranz, Laia Llucia-Carol, Anna M. Planas, Jordi Perez-Tur, Israel Fernandez-Cadenas, Paula Villares, Jair Tenorio, Roger Colobran, Andrea Martin-Nalda, Pere Soler-Palacin, Francesc Vidal, Aurora Pujol, Manel Esteller

Epigenome-wide association study of COVID-19 severity with respiratory failure

EBioMedicine 00 (2021) 103339 15 Apr 2021, .
BACKGROUND: Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19), exhibit a wide spectrum of disease behaviour. Since DNA methylation has been implicated in the regulation of viral infections and the immune system, we performed an epigenome-wide association study (EWAS) to identify candidate loci regulated by this epigenetic mark that could be involved in the onset of COVID-19 in patients without comorbidities. METHODS: Peripheral blood samples were obtained from 407 confirmed COVID-19 patients ≤ 61 years of age and without comorbidities, 194 (47.7%) of whom had mild symptomatology that did not involve hospitalization and 213 (52.3%) had a severe clinical course that required respiratory support. The set of cases was divided into discovery (n = 207) and validation (n = 200) cohorts, balanced for age and sex of individuals. We analysed the DNA methylation status of 850,000 CpG sites in these patients. FINDINGS: The DNA methylation status of 44 CpG sites was associated with the clinical severity of COVID-19. Of these loci, 23 (52.3%) were located in 20 annotated coding genes. These genes, such as the inflammasome component Absent in Melanoma 2 (AIM2) and the Major Histocompatibility Complex, class I C (HLA-C) candidates, were mainly involved in the response of interferon to viral infection. We used the EWAS-identified sites to establish a DNA methylation signature (EPICOVID) that is associated with the severity of the disease. INTERPRETATION: We identified DNA methylation sites as epigenetic susceptibility loci for respiratory failure in COVID-19 patients. These candidate biomarkers, combined with other clinical, cellular and genetic factors, could be useful in the clinical stratification and management of patients infected with the SARS-CoV-2. FUNDING: The Unstoppable campaign of the Josep Carreras Leukaemia Foundation, the Cellex Foundation and the CERCA Programme/Generalitat de Catalunya.
More information