المنشورات البحثية

Found 1655 publicacions matching the indicated search criteria.
Veronica Davalos, Carlos A. García-Prieto, Gerardo Ferrer, Sergio Aguilera-Albesa, Juan Valencia-Ramos, Agustí Rodríguez-Palmero, Montserrat Ruiz, Laura Planas-Serra, Iolanda Jordan, Iosune Alegría, Patricia Flores-P erez, Veronica Cantarín, Victoria Fumado, Maria Teresa Viadero, Carlos Rodrigo, Maria Méndez-Hernández, Eduardo Lopez-Granados, Roger Colobran, Jacques G. Riviere, Pere Soler-Palacín, Aurora Pujol, Manel Esteller

Epigenetic profiling linked to multisystem inflammatory syndrome in children (MIS-C): A multicenter, retrospective study

Lancet eClinicalMedicine 25 Jun 2022, 50 .
Background: Most children and adolescents infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain asymptomatic or develop a mild coronavirus disease 2019 (COVID-19) that usually does not require medical intervention. However, a small proportion of pediatric patients develop a severe clinical condition, multisystem inflammatory syndrome in children (MIS-C). The involvement of epigenetics in the control of the immune response and viral activity prompted us to carry out an epigenomic study to uncover target loci regulated by DNA methylation that could be altered upon the appearance of MIS-C. Methods: Peripheral blood samples were recruited from 43 confirmed MIS-C patients. 69 non-COVID-19 pediatric samples and 15 COVID-19 pediatric samples without MIS-C were used as controls. The cases in the two groups were mixed and divided into discovery (MIS-C = 29 and non-MIS-C = 56) and validation (MIS-C = 14 and non-MIS-C = 28) cohorts, and balanced for age, gender and ethnic background. We interrogated 850,000 CpG sites of the human genome for DNA methylation variants. Findings: The DNA methylation content of 33 CpG loci was linked with the presence of MIS-C. Of these sites, 18 (54.5%) were located in described genes. The top candidate gene was the immune T-cell mediator ZEB2; and others highly ranked candidates included the regulator of natural killer cell functional competence SH2D1B; VWA8, which contains a domain of the Von Willebrand factor A involved in the pediatric hemostasis disease; and human leukocyte antigen complex member HLA-DRB1; in addition to pro-inflammatory genes such as CUL2 and AIM2. The identified loci were used to construct a DNA methylation profile (EPIMISC) that was associated with MIS-C in both cohorts. The EPIMISC signature was also overrepresented in Kawasaki disease patients, a childhood pathology with a possible viral trigger, that shares many of the clinical features of MIS-C. Interpretation: We have characterized DNA methylation loci that are associated with MIS-C diagnosis. The identified genes are likely contributors to the characteristic exaggerated host inflammatory response observed in these patients. The described epigenetic signature could also provide new targets for more specific therapies for the disorder.
Ramos-Muntada M, Trincado JL, Blanco J, Bueno C, Rodríguez-Cortez VC, Bataller A, López-Millán B, Schwab C, Ortega M, Velasco P, Blanco ML, Nomdedeu J, Ramírez-Orellana M, Minguela A, Fuster JL, Cuatrecasas E, Camós M, Ballerini P, Escherich G, Boer J, denBoer M, Hernández-Rivas JM, Calasanz MJ, Cazzaniga G, Harrison CJ, Menéndez P, Molina O

Clonal heterogeneity and rates of specific chromosome gains are risk predictors in childhood high-hyperdiploid B-cell acute lymphoblastic leukemia

Molecular Oncology 21 Jun 2022, . Epub 21 Jun 2022
B-cell acute lymphoblastic leukemia (B-ALL) is the commonest childhood cancer. High hyperdiploidy (HHD) identifies the most frequent cytogenetic subgroup in childhood B-ALL. Although hyperdiploidy represents an important prognostic factor in childhood B-ALL, the specific chromosome gains with prognostic value in HHD-B-ALL remain controversial, and the current knowledge about the hierarchy of chromosome gains, clonal heterogeneity and chromosomal instability in HHD-B-ALL remains very limited. We applied automated sequential-iFISH coupled with single-cell computational modeling to identify the specific chromosomal gains of the eight typically gained chromosomes in a large cohort of 72 primary diagnostic (DX, n=62) and matched relapse (REL, n=10) samples from HHD-B-ALL patients with either favorable or unfavorable clinical outcome in order to characterize the clonal heterogeneity, specific chromosome gains and clonal evolution. Our data show a high degree of clonal heterogeneity and a hierarchical order of chromosome gains in DX samples of HHD-B-ALL. The rates of specific chromosome gains and clonal heterogeneity found in DX samples differ between HHD-B-ALL patients with favorable or unfavorable clinical outcome. In fact, our comprehensive analyses at DX using a computationally-defined risk predictor revealed low levels of trisomies +18+10 and low levels of clonal heterogeneity as robust relapse risk factors in minimal residual disease (MRD)-negative childhood HHD-B-ALL patients: relapse-free survival beyond 5-years: 22.1% vs 87.9%, P<0.0001 and 33.3% vs 80%, P<0.0001, respectively. Moreover, longitudinal analysis of matched DX-REL HHD-B-ALL samples revealed distinct patterns of clonal evolution at relapse. Our study offers a reliable prognostic sub-stratification of pediatric MRD-negative HHD-B-ALL patients.
More information
David Corujo, Roberto Malinverni, Juan Carrillo-Reixach, Oliver Meers, Arce Garcia-Jaraquemada, Marguerite-Marie Le Panne´rer, Vanesa Valero, Ainhoa Pérez, Álvaro Del Río-Álvarez, Laura Royo, Beatriz Pérez-González, Helena Raurell, Rafael D. Acemel, José M. Santos-Pereira, Marta Garrido-Pontnou, José Luis Gómez-Skarmeta, Lorenzo Pasquali, Josep Manyé, Carolina Armengol, Marcus Buschbeck

MacroH2As regulate enhancer-promoter contacts affecting enhancer activity and sensitivity to inflammatory cytokines

Cell Reports 21 Jun 2022, 39 (12) .
MacroH2A histone variants have a function in gene regulation that is poorly understood at the molecular level. We report that macroH2A1.2 and macroH2A2 modulate the transcriptional ground state of cancer cells and how they respond to inflammatory cytokines. Removal of macroH2A1.2 and macroH2A2 in hepatoblastoma cells affects the contact frequency of promoters and distal enhancers coinciding with changes in enhancer activity or preceding them in response to the cytokine tumor necrosis factor alpha. Although macroH2As regulate genes in both directions, they globally facilitate the nuclear factor κB (NF-κB)-mediated response. In contrast, macroH2As suppress the response to the pro-inflammatory cytokine interferon gamma. MacroH2A2 has a stronger contribution to gene repression than macroH2A1.2. Taken together, our results suggest that macroH2As have a role in regulating the response of cancer cells to inflammatory signals on the level of chromatin structure. This is likely relevant for the interaction of cancer cells with immune cells of their microenvironment.
Zhang YW, Mess J, Aizarani N, Mishra P, Johnson C, Romero-Mulero MC, Rettkowski J, Schönberger K, Obier N, Jäcklein K, Woessner NM, Lalioti ME, Velasco-Hernandez T, Sikora K, Wäsch R, Lehnertz B, Sauvageau G, Manke T, Menendez P, Walter SG, Minguet S, Laurenti E, Günther S, Grün D, Cabezas-Wallscheid N

Hyaluronic acid-GPRC5C signalling promotes dormancy in haematopoietic stem cells.

Nat Cell Biol 20 Jun 2022, . Epub 20 Jun 2022
Bone marrow haematopoietic stem cells (HSCs) are vital for lifelong maintenance of healthy haematopoiesis. In inbred mice housed in gnotobiotic facilities, the top of the haematopoietic hierarchy is occupied by dormant HSCs, which reversibly exit quiescence during stress. Whether HSC dormancy exists in humans remains debatable. Here, using single-cell RNA sequencing, we show a continuous landscape of highly purified human bone marrow HSCs displaying varying degrees of dormancy. We identify the orphan receptor GPRC5C, which enriches for dormant human HSCs. GPRC5C is also essential for HSC function, as demonstrated by genetic loss- and gain-of-function analyses. Through structural modelling and biochemical assays, we show that hyaluronic acid, a bone marrow extracellular matrix component, preserves dormancy through GPRC5C. We identify the hyaluronic acid-GPRC5C signalling axis controlling the state of dormancy in mouse and human HSCs.
More information
Estupiñán-Moreno E, Ortiz-Fernández L, Li T, Hernández-Rodríguez J, Ciudad L, Andrés-León E, Terron-Camero LC, Prieto-González S, Espígol-Frigolé G, Cid MC, Márquez A, Ballestar E, Martín J

Methylome and transcriptome profiling of giant cell arteritis monocytes reveals novel pathways involved in disease pathogenesis and molecular response to glucocorticoids.

Ann Rheum Dis 15 Jun 2022, . Epub 15 Jun 2022
Giant cell arteritis (GCA) is a complex systemic vasculitis mediated by the interplay between both genetic and epigenetic factors. Monocytes are crucial players of the inflammation occurring in GCA. Therefore, characterisation of the monocyte methylome and transcriptome in GCA would be helpful to better understand disease pathogenesis.
More information
P. Kobialka, H. Sabata, O. Vilalta, L. Gouveia, A. Angulo, L. Muixí, J. Zanoncello, O. Muñoz, Nagore G Olaciregui, Lucia Fanlo, Anna Esteve-Codina , Cinzia Lavarino, Biola M Javierre, Veronica Celis, Carlota Rovira, Susana López-Fernández, Eulàlia Baselga, Jaume Mora, Sandra D Castillo, Mariona Graupera

The onset of PI3K-related vascular malformations occurs during angiogenesis and is prevented by the AKT inhibitor miransertib

Embo Molecular Medicine 13 Jun 2022, . Epub 13 Jun 2022
Low-flow vascular malformations are congenital overgrowths composed of abnormal blood vessels potentially causing pain, bleeding and obstruction of different organs. These diseases are caused by oncogenic mutations in the endothelium, which result in overactivation of the PI3K/AKT pathway. Lack of robust in vivo preclinical data has prevented the development and translation into clinical trials of specific molecular therapies for these diseases. Here, we demonstrate that the Pik3caH1047R activating mutation in endothelial cells triggers a transcriptome rewiring that leads to enhanced cell proliferation. We describe a new reproducible preclinical in vivo model of PI3K-driven vascular malformations using the postnatal mouse retina. We show that active angiogenesis is required for the pathogenesis of vascular malformations caused by activating Pik3ca mutations. Using this model, we demonstrate that the AKT inhibitor miransertib both prevents and induces the regression of PI3K-driven vascular malformations. We confirmed the efficacy of miransertib in isolated human endothelial cells with genotypes spanning most of human low-flow vascular malformations.
More information
Elsa Bernard, Heinz Tuechler, Peter L. Greenberg, Robert P. Hasserjian, Juan E. Arango Ossa, Yasuhito Nannya, Sean M. Devlin, Maria Creignou, Philippe Pinel, Lily Monnier, Gunes Gundem, Juan S. Medina-Martinez, Dylan Domenico, Martin Jädersten, Ulrich Germing, Guillermo Sanz, Arjan A. van de Loosdrecht, Olivier Kosmider, Matilde Y. Follo, Felicitas Thol, Lurdes Zamora, Ronald F. Pinheiro, Andrea Pellagatti, Harold K. Elias, Detlef Haase, Christina Ganster, Lionel Ades, Magnus Tobiasson, Laura Palomo, Matteo Giovanni Della Porta, Akifumi Takaori-Kondo, Takayuki Ishikawa, Shigeru Chiba, Senji Kasahara, Yasushi Miyazaki, Agnes Viale, Kety Huberman, Pierre Fenaux, Monika Belickova, Michael R. Savona, Virginia M. Klimek, Fabio P. S. Santos, Jacqueline Boultwood, Ioannis Kotsianidis, Valeria Santini, Francesc Solé, Uwe Platzbecker, Michael Heuser, Peter Valent, Kazuma Ohyashiki, Carlo Finelli, Maria Teresa Voso, Lee-Yung Shih, Michaela Fontenay, Joop H. Jansen, José Cervera, Norbert Gattermann, Benjamin L. Ebert, Rafael Bejar, Luca Malcovati, Mario Cazzola, Seishi Ogawa, Eva Hellström-Lindberg, Elli Papaemmanuil

Molecular International Prognostic Scoring System for Myelodysplastic Syndromes

NEJM Evidence 12 Jun 2022, . Epub 12 Jun 2022
Bueno-Costa A, Piñeyro D, García-Prieto CA, Ortiz-Barahona V, Martinez-Verbo L, Webster NA, Andrews B, Kol N, Avrahami C, Moshitch-Moshkovitz S, Rechavi G, Esteller M

Remodeling of the m6A RNA landscape in the conversion of acute lymphoblastic leukemia cells to macrophages

Leukemia 9 Jun 2022, . Epub 9 Jun 2022More information
Ramesh-Kumar D, Guil S

The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer.

Seminars in Cancer Biology 25 May 2022, . Epub 25 May 2022
RNA binding proteins that act at the post-transcriptional level display a richness of mechanisms to modulate the transcriptional output and respond to changing cellular conditions. The family of IGF2BP proteins recognize mRNAs modified by methylation and lengthen their lifecycle in the context of stable ribonucleoprotein particles to promote cancer progression. They are emerging as key 'reader' proteins in the epitranscriptomic field, driving the fate of bound substrates under physiological and disease conditions. Recent developments in the field include the recognition that noncoding substrates play crucial roles in mediating the pro-growth features of IGF2BP family, not only as regulated targets, but also as modulators of IGF2BP function themselves. In this review, we summarize the regulatory roles of IGF2BP proteins and link their molecular role as m
More information
Clara Alsinet, Maria Nascimento Primo, Valentina Lorenzi, Erica Bello, Iva Kelava, Carla P. Jones, Roser Vilarrasa-Blasi, Carmen Sancho-Serra, Andrew J. Knights, Jong-Eun Park, Beata S. Wyspianska, Gosia Trynka, David F. Tough, Andrew Bassett, Daniel J. Gaffney, Damiana Alvarez-Errico, Roser Vento-Tormo

Robust temporal map of human in vitro myelopoiesis using single-cell genomics

Nat Commun 13, 2885 (2022). https://doi.org/10.1038/s41467-022-30557-4 24 May 2022, .
Myeloid cells are central to homeostasis and immunity. Characterising in vitro myelopoiesis protocols is imperative for their use in research, immunotherapies, and understanding human myelopoiesis. Here, we generate a >470K cells molecular map of human induced pluripotent stem cells (iPSC) differentiation into macrophages. Integration with in vivo single-cell atlases shows in vitro differentiation recapitulates features of yolk sac hematopoiesis, before definitive hematopoietic stem cells (HSC) emerge. The diversity of myeloid cells generated, including mast cells and monocytes, suggests that HSC-independent hematopoiesis can produce multiple myeloid lineages. We uncover poorly described myeloid progenitors and conservation between in vivo and in vitro regulatory programs. Additionally, we develop a protocol to produce iPSC-derived dendritic cells (DC) resembling cDC2. Using CRISPR/Cas9 knock-outs, we validate the effects of key transcription factors in macrophage and DC ontogeny. This roadmap of myeloid differentiation is an important resource for investigating human fetal hematopoiesis and new therapeutic opportunities.