Spotlight

News

Marcos-Gragera group

Checking the effectiveness of drugs with real-world epidemiological data helps determine their benefit to the patient

Researchers from the Descriptive and analytical epidemiology of cancer group at the Josep Carreras Leukaemia Research Institute have participated in a study that has compared the effectiveness data of tyrosine kinase inhibitors (TKIs) declared in randomized clinical trials, with their action on real population based on epidemiological data. The research proves that the results of the trials, despite being carried out under ideal, highly controlled conditions, are correctly translated to the general population, with all its complexity, demonstrating the effectiveness of TKIs in the real world.

Read more
Look-Alikes

Biological explanation discovered of why we all have a “look-alike” person

Researchers at the Josep Carreras Leukaemia Research Institute, led by Dr. Manel Esteller, have discovered that extremely similar but unrelated people share genetic characteristics in the genes responsible for the formation of facial features. This explains, from a biological point of view, the appearance of "doubles" in remote places, and could help in the identification of a person from genetic material, which would be of great interest in forensic and legal medicine.

Read more

A new project aims to shed new light on a frequent form of leukemia in Down Syndrome children

The American Society of Hematology (ASH) has selected a project led by Dr. Sergi Cuartero, researcher at the Josep Carreras Leukaemia Research Institute, to receive the 2022 ASH Global Research Award. Dr. Cuartero is one of 13 talented early-career investigators selected for this honor. The project aims to better understand the molecular basis of myeloid leukemia of Down Syndrome (ML-DS) and contribute to the identification of novel actionable targets for therapeutic use in ML-DS.

Read more
Oscar Molina 2021

A new method developed by researchers from the Josep Carreras Institute predicts childhood hyperdiploid B-ALL relapse risk

An international research team coordinated by Dr. Oscar Molina and Dr. Pablo Menéndez, from the Josep Carreras Leukaemia Research Institute, identifies chromosomal abnormalities associated to relapse in a frequent subset of B-cell Acute Lymphoblastic Leukemia (B-ALL), a severe condition affecting especially children. This finding may help identify those patients at a higher risk of relapse at diagnosis to direct them to more appropriate treatment options and anticipate the cancer comeback.

Read more
Laura Mondragón

Researchers at the Josep Carreras Institute will study a rare T-cell lymphoma thanks to the Leukemia Research Foundation

Dr. Laura Mondragón, “T-cell lymphoma” group leader at the Josep Carreras Leukaemia Research Institute, has been granted a new project to fight against angioimmunoblastic T cell lymphoma (AITL). The project, starting October 1st 2022, is funded by the Leukemia Research Foundation based in Northfield, Illinois (USA) and aims to exploit the latest generation of animal models for AITL, to better understand this type of adult lymphoma and open the door to new therapeutic approaches.

Read more

Recent publications

Eric J Duncavage, Adam Bagg, Robert P Hasserjian, Courtney D DiNardo, Lucy A Godley, Ilaria Iacobucci, Siddhartha Jaiswal, Luca Malcovati, Alessandro M Vannucchi 9, Keyur P Patel, Daniel A Arber, Maria E Arcila, Rafael Bejar, Nancy Berliner, Michael J Borowitz, Susan Branford, Anna L Brown, Catherine A Cargo, Hartmut Döhner, Brunangelo Falini, Guillermo Garcia-Manero, Torsten Haferlach, Eva Hellström-Lindberg, Annette S Kim, Jeffery M Klco, Rami S Komrokji, Mignon L Loh, Sanam Loghavi, Charles G Mullighan, Seishi Ogawa, Ayalew Tefferi, Elli Papaemmanuil, Andreas Reiter, David Morrall Ross, Michael R Savona, Akiko Shimamura, Radek C Skoda, Francesc Sole, Richard M Stone, Attilio Orazi, Matthew J Walter, David Wu, Benjamin L Ebert, Mario Cazzola

Genomic Profiling for Clinical Decision Making in Myeloid Neoplasms and Acute Leukemia

Blood 21 Sep 2022, .
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. While assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the last several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole exome sequencing (WES), whole genome sequencing (WGS), and whole transcriptome sequencing (WTS) or RNAseq. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are employed not only for detecting somatically acquired gene mutations, but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias makes extensive use of genomic data. This report aims to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with these hematologic neoplasms.
More information
Cuartero S, Stik G, Stadhouders R

Three-dimensional genome organization in immune cell fate and function.

Nat Rev Immunol 20 Sep 2022, . Epub 20 Sep 2022
Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.
More information
Winkler R, Mägdefrau AS, Piskor EM, Kleemann M, Beyer M, Linke K, Hansen L, Schaffer AM, Hoffmann ME, Poepsel S, Heyd F, Beli P, Möröy T, Mahboobi S, Krämer OH, Kosan C

Targeting the MYC interaction network in B-cell lymphoma via histone deacetylase 6 inhibition.

Oncogene 6 Sep 2022, . Epub 6 Sep 2022
Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC-induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC-overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma.
More information
Guil S, Esteller M

PRC2 Loss and DNMT Inhibition Boost Viral Mimicry in Cancer.

Cancer Discov 2 Sep 2022, 12 (9) 2020-2022.
In this issue of Cancer Discovery, Patel and colleagues explore the synergistic lethality of PRC2 inactivation and DNMT inhibition in malignant peripheral nerve sheath tumor cells. Reactivation of retrotransposons under this dual control suggests that the viral mimicry response contributes to enhanced cytotoxicity with potential clinical implications. See related article by Patel et al., p. 2120 (5).
More information
R. S. Joshi, M. Rigau, C.A. García-Prieto, M. Castro de Moura, D. Piñeyro, S. Moran, V. Davalos, P. Carrion, M. Ferrando-Bernal, I. Olalde, C. Lalueza-Fox, A. Navarro, C. Fernández-Tena, D. Aspandi, F. M. Sukno, X. Binefa, A. Valencia, M. Esteller

Look-alike humans identified by facial recognition algorithms show genetic similarities

Cell Reports 30 Aug 2022, .
The human face is one of the most visible features of our unique identity as individuals. Interestingly, mono-zygotic twins share almost identical facial traits and the same DNA sequence but could exhibit differences in other biometrical parameters. The expansion of the world wide web and the possibility to exchange pictures of humans across the planet has increased the number of people identified online as virtual twins or doubles that are not family related. Herein, we have characterized in detail a set of ‘‘look-alike’’ humans, defined by facial recognition algorithms, for their multiomics landscape. We report that these individuals share similar genotypes and differ in their DNA methylation and microbiome landscape. These results not only provide in-sights about the genetics that determine our face but also might have implications for the establishment of other human anthropometric properties and even personality characteristics.

Events