Research publications

Found 29 publicacions matching the indicated search criteria.
Joshi R, Shvartsman M, Morán E, Lois S, Aranda J, Barqué A, de la Cruz X, Bruguera M, Vagace JM, Gervasini G, Sanz C, Sánchez M

Functional consequences of transferrin receptor-2 mutations causing hereditary hemochromatosis type 3.

Mol Genet Genomic Med May 2015, 3 (3) 221-32. Epub 6 Mar 2015
Hereditary hemochromatosis (HH) type 3 is an autosomal recessive disorder of iron metabolism characterized by excessive iron deposition in the liver and caused by mutations in the transferrin receptor 2 (TFR2) gene. Here, we describe three new HH type 3 Spanish families with four TFR2 mutations (p.Gly792Arg, c.1606-8A>G, Gln306*, and Gln672*). The missense variation p.Gly792Arg was found in homozygosity in two adult patients of the same family, and in compound heterozygosity in an adult proband that also carries a novel intronic change (c.1606-8A>G). Two new nonsense TFR2 mutations (Gln306* and Gln672*) were detected in a pediatric case. We examine the functional consequences of two TFR2 variants (p.Gly792Arg and c.1606-8A>G) using molecular and computational methods. Cellular protein localization studies using immunofluorescence demonstrated that the plasma membrane localization of p.Gly792Arg TFR2 is impaired. Splicing studies in vitro and in vivo reveal that the c.1606-8A>G mutation leads to the creation of a new acceptor splice site and an aberrant TFR2 mRNA. The reported mutations caused HH type 3 by protein truncation, altering TFR2 membrane localization or by mRNA splicing defect, producing a nonfunctional TFR2 protein and a defective signaling transduction for hepcidin regulation. TFR2 genotyping should be considered in adult but also in pediatric cases with early-onset of iron overload.
More information
De Falco L, Silvestri L, Kannengiesser C, Morán E, Oudin C, Rausa M, Bruno M, Aranda J, Argiles B, Yenicesu I, Falcon-Rodriguez M, Yilmaz-Keskin E, Kocak U, Beaumont C, Camaschella C, Iolascon A, Grandchamp B, Sanchez M

Functional and clinical impact of novel TMPRSS6 variants in iron-refractory iron-deficiency anemia patients and genotype-phenotype studies.

Hum. Mutat. Nov 2014, 35 (11) 1321-9. Epub 10 Sep 2014
Iron-refractory iron-deficiency anemia (IRIDA) is a rare autosomal-recessive disorder characterized by hypochromic microcytic anemia, low transferrin saturation, and inappropriate high levels of the iron hormone hepcidin. The disease is caused by variants in the transmembrane protease serine 6 (TMPRSS6) gene that encodes the type II serine protease matriptase-2, a negative regulator of hepcidin transcription. Sequencing analysis of the TMPRSS6 gene in 21 new IRIDA patients from 16 families with different ethnic origin reveal 17 novel mutations, including the most frequent mutation in Southern Italy (p.W590R). Eight missense mutations were analyzed in vitro. All but the p.T287N variant impair matriptase-2 autoproteotylic activation, decrease the ability to cleave membrane HJV and inhibit the HJV-dependent hepcidin activation. Genotype-phenotype studies in IRIDA patients have been so far limited due to the relatively low number of described patients. Our genotype-phenotype correlation analysis demonstrates that patients carrying two nonsense mutations present a more severe anemia and microcytosis and higher hepcidin levels than the other patients. We confirm that TMPRSS6 mutations are spread along the gene and that mechanistically they fully or partially abrogate hepcidin inhibition. Genotyping IRIDA patients help in predicting IRIDA severity and may be useful for predicting response to iron treatment.
More information
Teixeira E, Borlido-Santos J, Brissot P, Butzeck B, Courtois F, Evans RW, Fernau J, Nunes JA, Mullett M, Paneque M, Pineau B, Porto G, Sorrill R, Sanchez M, Swinkels DW, Toska K, Varkonyi J

The importance of the general practitioner as an information source for patients with hereditary haemochromatosis.

Patient Educ Couns Jul 2014, 96 (1) 86-92. Epub 5 May 2014
To explore hereditary haemochromatosis (HH) patients' perspectives on genetic information, namely the types of sources used, preferred or trusted.
More information
Tzou WS, Chu Y, Lin TY, Hu CH, Pai TW, Liu HF, Lin HJ, Cases I, Rojas A, Sanchez M, You ZY, Hsu MW

Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom.

PLoS ONE 2014, 9 (1) e86718. Epub 28 Jan 2014
Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5' untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.
More information
Athiyarath R, Arora N, Fuster F, Schwarzenbacher R, Ahmed R, George B, Chandy M, Srivastava A, Rojas AM, Sanchez M, Edison ES

Two novel missense mutations in iron transport protein transferrin causing hypochromic microcytic anaemia and haemosiderosis: molecular characterization and structural implications.

Br. J. Haematol. Nov 2013, 163 (3) 404-7. Epub 24 Jul 2013More information
De Falco L, Sanchez M, Silvestri L, Kannengiesser C, Muckenthaler MU, Iolascon A, Gouya L, Camaschella C, Beaumont C

Iron refractory iron deficiency anemia.

Haematologica Jun 2013, 98 (6) 845-53.
Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach.
More information
Luscieti S, Tolle G, Aranda J, Campos CB, Risse F, Morán É, Muckenthaler MU, Sánchez M

Novel mutations in the ferritin-L iron-responsive element that only mildly impair IRP binding cause hereditary hyperferritinaemia cataract syndrome.

Orphanet J Rare Dis 2013, 8 30. Epub 19 Feb 2013
Hereditary Hyperferritinaemia Cataract Syndrome (HHCS) is a rare autosomal dominant disease characterized by increased serum ferritin levels and early onset of bilateral cataract. The disease is caused by mutations in the Iron-Responsive Element (IRE) located in the 5' untranslated region of L-Ferritin (FTL) mRNA, which post-transcriptionally regulates ferritin expression.
More information
Liu Z, Lanford R, Mueller S, Gerhard GS, Luscieti S, Sanchez M, Devireddy L

Siderophore-mediated iron trafficking in humans is regulated by iron.

J. Mol. Med. Oct 2012, 90 (10) 1209-21. Epub 15 Apr 2012
Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-hydroxy butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3'-untranslated region of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking.
More information
Sanchez M, Galy B, Schwanhaeusser B, Blake J, Bähr-Ivacevic T, Benes V, Selbach M, Muckenthaler MU, Hentze MW

Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins.

Blood 24 Nov 2011, 118 (22) e168-79. Epub 22 Sep 2011
Iron regulatory proteins (IRPs) 1 and 2 are RNA-binding proteins that control cellular iron metabolism by binding to conserved RNA motifs called iron-responsive elements (IREs). The currently known IRP-binding mRNAs encode proteins involved in iron uptake, storage, and release as well as heme synthesis. To systematically define the IRE/IRP regulatory network on a transcriptome-wide scale, IRP1/IRE and IRP2/IRE messenger ribonucleoprotein complexes were immunoselected, and the mRNA composition was determined using microarrays. We identify 35 novel mRNAs that bind both IRP1 and IRP2, and we also report for the first time cellular mRNAs with exclusive specificity for IRP1 or IRP2. To further explore cellular iron metabolism at a system-wide level, we undertook proteomic analysis by pulsed stable isotope labeling by amino acids in cell culture in an iron-modulated mouse hepatic cell line and in bone marrow-derived macrophages from IRP1- and IRP2-deficient mice. This work investigates cellular iron metabolism in unprecedented depth and defines a wide network of mRNAs and proteins with iron-dependent regulation, IRP-dependent regulation, or both.
More information
Rodrigues PN, Gomes SS, Neves JV, Gomes-Pereira S, Correia-Neves M, Nunes-Alves C, Stolte J, Sanchez M, Appelberg R, Muckenthaler MU, Gomes MS

Mycobacteria-induced anaemia revisited: a molecular approach reveals the involvement of NRAMP1 and lipocalin-2, but not of hepcidin.

Immunobiology Oct 2011, 216 (10) 1127-34. Epub 20 Apr 2011
Anaemia is a frequent complication of chronic infectious diseases but the exact mechanisms by which it develops remain to be clarified. In the present work, we used a mouse model of mycobacterial infection to study molecular alterations of iron metabolism induced by infection. We show that four weeks after infection with Mycobacterium avium BALB/c mice exhibited a moderate anaemia, which was not accompanied by an increase on hepatic hepcidin mRNA expression. Instead, infected mice presented increased mRNA expression of ferroportin (Slc40a1), ceruloplasmin (Cp), hemopexin (Hpx), heme-oxygenase-1 (Hmox1) and lipocalin-2 (Lcn2). Both the anaemia and the mRNA expression changes of iron-related genes were largely absent in C.D2 mice which bear a functional allele of the Nramp1 gene. Data presented in this work suggest that anaemia due to a chronic mycobacterial infection may develop in the absence of elevated hepcidin expression, is influenced by Nramp1 and may involve lipocalin-2.
More information