Research publications

Found 86 publicacions matching the indicated search criteria.
Nagata Y, Narumi S, Guan Y, Przychodzen BP, Hirsch CM, Makishima H, Shima H, Aly M, Pastor V, Kuzmanovic T, Radivoyevitch T, Adema V, Awada H, Yoshida K, Li S, Sole F, Hanna R, Jha BK, LaFramboise T, Ogawa S, Sekeres MA, Wlodarski MW, Cammenga J, Maciejewski JP

Germline loss of function SAMD9 and SAMD9L alterations in adult myelodysplastic syndromes

Blood 15 Oct 2018, . Epub 15 Oct 2018More information
Miyazaki Y, Tuechler H, Sanz G, Schanz J, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, Kantarjian H, Kuendgen A, Malcovati L, Cazzola M, Cermak J, Fonatsch C, Le Beau MM, Slovak ML, Santini V, Lübbert M, Maciejewski J, Machherndl-Spandl S, Magalhaes SMM, Pfeilstöcker M, Sekeres MA, Sperr WR, Stauder R, Tauro S, Valent P, Vallespi T, van de Loosdrecht AA, Germing U, Haase D, Greenberg PL

Differing clinical features between Japanese and Caucasian patients with myelodysplastic syndromes: Analysis from the International Working Group for Prognosis of MDS.

Leuk. Res. Oct 2018, 73 51-57. Epub 6 Sep 2018
Clinical features of myelodysplastic syndromes (MDS) could be influenced by many factors, such as disease intrinsic factors (e.g., morphologic, cytogenetic, molecular), extrinsic factors (e.g, management, environment), and ethnicity. Several previous studies have suggested such differences between Asian and European/USA countries. In this study, to elucidate potential differences in primary untreated MDS between Japanese (JPN) and Caucasians (CAUC), we analyzed the data from a large international database collected by the International Working Group for Prognosis of MDS (300 and 5838 patients, respectively). JPN MDS were significantly younger with more severe cytopenias, and cytogenetic differences: less del(5q) and more +1/+1q, -1/del(1p), der(1;7), -9/del(9q), del(16q), and del(20q). Although differences in time to acute myeloid leukemia transformation did not occur, a significantly better survival in JPN was demonstrated, even after the adjustment for age and FAB subtypes, especially in lower, but not in higher prognostic risk categories. Certain clinical factors (cytopenias, blast percentage, cytogenetic risk) had different impact on survival and time to transformation to leukemia between the two groups. Although possible confounding events (e.g., environment, diet, and access to care) could not be excluded, our results indicated the existence of clinically relevant ethnic differences regarding survival in MDS between JPN and CAUC patients. The good performance of the IPSS-R in both CAUC and JP patients underlines that its common risk model is adequate for CAUC and JP.
More information
Schanz J, Solé F, Mallo M, Luño E, Cervera J, Granada I, Hildebrandt B, Slovak ML, Ohyashiki K, Fonatsch C, Pfeilstöcker M, Nösslinger T, Valent P, Giagounidis A, Aul C, Lübbert M, Stauder R, Krieger O, Le Beau MM, Bennett JM, Greenberg P, Germing U, Haase D

Clonal architecture in patients with myelodysplastic syndromes and double or minor complex abnormalities: Detailed analysis of clonal composition, involved abnormalities, and prognostic significance.

Genes Chromosomes Cancer 24 Sep 2018, . Epub 24 Sep 2018
The study analyzes the clonal architecture and the abnormalities involved in a series of 191 patients with myelodysplastic syndromes (MDS) and 2-3 clonal abnormalities. All patients were extracted from an international database. The patients were classified into six clonal subtypes (2A-3C) based on the number of abnormalities and the presentation of unrelated clones (UC) and/or a clonal evolution. UC were detected in 23/191 patients (12%). The composition of UC showed great variability. The only recurrent combination of abnormalities was del(5q) and + 8 in 8 of 23 patients (35%). In patients with clonal evolution, the clone size of the primary and secondary clone varied: Patients with -7 and + 8 in the primary clone showed a larger primary and a smaller secondary clone (-7: median 74% vs 10%; +8 73% vs 18%) while patients with del(5q) in the primary clone showed a smaller primary and a larger secondary clone (33% vs 61%). Univariate and multivariate analyses showed no significant differences regarding overall or AML-free survival between the clonal subtypes. Only the subtype 3C (3 abnormalities and clonal evolution) was an independent risk factor for developing AML (Hazard Ratio 5.5 as compared to subtype 2A, P < .05). Finally, our study confirms that the number of abnormalities clearly defines a significant risk factor for overall- as well as AML-free survival. Importantly, in patients with more than one clone, the calculation of the number of abnormalities in the entire sample instead of the number of abnormalities per clone allows a higher prognostic accuracy.
More information
Banús-Mulet A, Etxabe A, Cornet-Masana JM, Torrente MÁ, Lara-Castillo MC, Palomo L, Nomdedeu M, Díaz-Beyá M, Solé F, Nomdedeu B, Esteve J, Risueño RM

Serotonin receptor type 1B constitutes a therapeutic target for MDS and CMML.

Sci Rep 17 Sep 2018, 8 (1) 13883. Epub 17 Sep 2018
Myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) are chronic myeloid clonal neoplasms. To date, the only potentially curative therapy for these disorders remains allogeneic hematopoietic progenitor cell transplantation (HCT), although patient eligibility is limited due to high morbimortality associated with this procedure coupled with advanced age of most patients. Dopamine receptors (DRs) and serotonin receptors type 1 (HTR1s) were identified as cancer stem cell therapeutic targets in acute myeloid leukemia. Given their close pathophysiologic relationship, expression of HTR1s and DRs was interrogated in MDS and CMML. Both receptors were differentially expressed in patient samples compared to healthy donors. Treatment with HTR1B antagonists reduced cell viability. HTR1 antagonists showed a synergistic cytotoxic effect with currently approved hypomethylating agents in AML cells. Our results suggest that HTR1B constitutes a novel therapeutic target for MDS and CMML. Due to its druggability, the clinical development of new regimens based on this target is promising.
More information
Genescà E, Lazarenkov A, Morgades M, Berbis G, Ruíz-Xivillé N, Gómez-Marzo P, Ribera J, Juncà J, González-Pérez A, Mercadal S, Guardia R, Artola MT, Moreno MJ, Martínez-López J, Zamora L, Barba P, Gil C, Tormo M, Cladera A, Novo A, Pratcorona M, Nomdedeu J, González-Campos J, Almeida M, Cervera J, Montesinos P, Batlle M, Vives S, Esteve J, Feliu E, Solé F, Orfao A, Ribera JM

Frequency and clinical impact of CDKN2A/ARF/CDKN2B gene deletions as assessed by in-depth genetic analyses in adult T cell acute lymphoblastic leukemia.

J Hematol Oncol 24 Jul 2018, 11 (1) 96. Epub 24 Jul 2018
Recurrent deletions of the CDKN2A/ARF/CDKN2B genes encoded at chromosome 9p21 have been described in both pediatric and adult acute lymphoblastic leukemia (ALL), but their prognostic value remains controversial, with limited data on adult T-ALL. Here, we investigated the presence of homozygous and heterozygous deletions of the CDKN2A/ARF and CDKN2B genes in 64 adult T-ALL patients enrolled in two consecutive trials from the Spanish PETHEMA group. Alterations in CDKN2A/ARF/CDKN2B were detected in 35/64 patients (55%). Most of them consisted of 9p21 losses involving homozygous deletions of the CDKNA/ARF gene (26/64), as confirmed by single nucleotide polymorphism (SNP) arrays and interphase fluorescence in situ hybridization (iFISH). Deletions involving the CDKN2A/ARF/CDKN2B locus correlated with a higher frequency of cortical T cell phenotype and a better clearance of minimal residual disease (MRD) after induction therapy. Moreover, the combination of an altered copy-number-value (CNV) involving the CDKN2A/ARF/CDKN2B gene locus and undetectable MRD (≤ 0.01%) values allowed the identification of a subset of T-ALL with better overall survival in the absence of hematopoietic stem cell transplantation.
More information
Martin R, Acha P, Ganster C, Palomo L, Dierks S, Fuster-Tormo F, Mallo M, Ademà V, Gómez-Marzo P, De Haro N, Solanes N, Zamora L, Xicoy B, Shirneshan K, Flach J, Braulke F, Schanz J, Kominowski A, Stromburg M, Brockmann A, Trümper L, Solé F, Haase D

Targeted deep sequencing of CD34+ cells from peripheral blood can reproduce bone marrow molecular profile in myelodysplastic syndromes.

Am. J. Hematol. Jun 2018, 93 (6) E152-E154. Epub 10 Apr 2018More information
Hurtado AM, Luengo-Gil G, Chen-Liang TH, Amaral F, Batta K, Palomo L, Lumbreras E, Przychodzen B, Caparros E, Amigo ML, Dıez-Campelo M, Zamora L, Salido Fierrez EJ, Maciejewski JP, Ortuño FJ, Vicente V, Del Canizo M, Sole F, Ferrer-Marin F, Wiseman DH, Jerez A

Transcriptomic rationale for synthetic lethality-targeting ERCC1 and CDKN1A in chronic myelomonocytic leukaemia.

Br. J. Haematol. 24 May 2018, . Epub 24 May 2018
Despite the absence of mutations in the DNA repair machinery in myeloid malignancies, the advent of high-throughput sequencing and discovery of splicing and epigenetics defects in chronic myelomonocytic leukaemia (CMML) prompted us to revisit a pathogenic role for genes involved in DNA damage response. We screened for misregulated DNA repair genes by enhanced RNA-sequencing on bone marrow from a discovery cohort of 27 CMML patients and 9 controls. We validated 4 differentially expressed candidates in CMML CD34
More information
Palomo L, Malinverni R, Cabezón M, Xicoy B, Arnan M, Coll R, Pomares H, García O, Fuster-Tormo F, Grau J, Feliu E, Solé F, Buschbeck M, Zamora L

DNA methylation profile in chronic myelomonocytic leukemia associates with distinct clinical, biological and genetic features.

Epigenetics 2018, 13 (1) 8-18. Epub 6 Feb 2018
Chromosomal abnormalities are detected in 20-30% of patients with chronic myelomonocytic leukemia (CMML) and correlate with prognosis. On the mutation level, disruptive alterations are particularly frequent in chromatin regulatory genes. However, little is known about the consequential alterations in the epigenetic marking of the genome. Here, we report the analysis of genomic DNA methylation patterns of 64 CMML patients and 10 healthy controls, using a DNA methylation microarray focused on promoter regions. Differential methylation analysis between patients and controls allowed us to identify abnormalities in DNA methylation, including hypermethylation of specific genes and large genome regions with aberrant DNA methylation. Unsupervised hierarchical cluster analysis identified two main clusters that associated with the clinical, biological, and genetic features of patients. Group 1 was enriched in patients with adverse clinical and biological characteristics and poorer overall and progression-free survival. In addition, significant differences in DNA methylation were observed between patients with low risk and intermediate/high risk karyotypes and between TET2 mutant and wild type patients. Taken together, our results demonstrate that altered DNA methylation patterns reflect the CMML disease state and allow to identify patient groups with distinct clinical features.
More information
Nomdedeu M, Pereira A, Calvo X, Colomer J, Sole F, Arias A, Gomez C, Luño E, Cervera J, Arnan M, Pomares H, Ramos F, Oiartzabal I, Espinet B, Pedro C, Arrizabalaga B, Blanco ML, Tormo M, Hernandez-Rivas JM, Díez-Campelo M, Ortega M, Valcárcel D, Cedena MT, Collado R, Grau J, Granada I, Sanz G, Campo E, Esteve J, Costa D

Clinical and biological significance of isolated Y chromosome loss in myelodysplastic syndromes and chronic myelomonocytic leukemia. A report from the Spanish MDS Group.

Leuk. Res. Dec 2017, 63 85-89. Epub 28 Oct 2017
Isolate loss of chromosome Y (-Y) in myelodysplastic syndromes (MDS) is associated to a better outcome but it is also well described as an age-related phenomenon. In this study we aimed to analyze the prognostic impact of -Y in the context of the IPSS-R cytogenetic classification, evaluate the clinical significance of the percentage of metaphases with isolated -Y, and test whether finding -Y may predispose to over-diagnose MDS in patients with borderline morphological features. We evaluated 3581 male patients from the Spanish MDS Registry with a diagnosis of MDS or chronic myelomonocytic leukemia (CMML). -Y was identified in 177 patients (4.9%). Compared with the 2246 male patients with normal karyotype, -Y group showed a reduced risk of leukemic transformation that did not translate into a survival advantage. The overall survival and the risk of leukemic transformation were not influenced by the percentage of metaphases with -Y. The -Y group was not enriched in patients with minor morphologic traits of dysplasia, suggesting that the better outcome in the -Y group cannot be explained by enrichment in cases misdiagnosed as MDS. In conclusion, our results support the current recommendation of classifying patients with -Y within the very good risk category of the IPSS-R for MDS and rule out a selection bias as a possible explanation of this better outcome. An analysis of the molecular basis of MDS with isolated -Y would be of interest as it may provide a biological basis of protection against progression to acute leukemia.
More information
Ribera J, Zamora L, Morgades M, Mallo M, Solanes N, Batlle M, Vives S, Granada I, Juncà J, Malinverni R, Genescà E, Guàrdia R, Mercadal S, Escoda L, Martinez-Lopez J, Tormo M, Esteve J, Pratcorona M, Martinez-Losada C, Solé F, Feliu E, Ribera JM

Copy number profiling of adult relapsed B-cell precursor acute lymphoblastic leukemia reveals potential leukemia progression mechanisms.

Genes Chromosomes Cancer Nov 2017, 56 (11) 810-820. Epub 26 Aug 2017
The outcome of relapsed adult acute lymphoblastic leukemia (ALL) remains dismal despite new therapeutic approaches. Previous studies analyzing relapse samples have shown a high degree of heterogeneity regarding gene alterations without an evident relapse signature. Bone marrow or peripheral blood samples from 31 adult B-cell precursor ALL patients at first relapse, and 21 paired diagnostic samples were analyzed by multiplex ligation probe-dependent amplification (MLPA). Nineteen paired diagnostic and relapse samples of these 21 patients were also analyzed by SNP arrays. A trend to acquire homozygous CDKN2A/B deletions and a significant increase in the number of copy number alterations (CNA) was observed from diagnosis to first relapse. Evolution from an ancestral clone was the main pattern of clonal evolution. Relapse samples were extremely heterogeneous regarding CNA frequencies. However, CDKN2A/B, PAX5, ETV6, ATM, IKZF1, VPREB1, and TP53 deletions and duplications of 1q, 8q, 17q, 21, X/Y PAR1, and Xp were frequently detected at relapse. Duplications of genes involved in cell proliferation, drug resistance and stem cell homeostasis regulation, as well as deletions of KDM6A and STAG2 genes emerged as specific alterations at relapse. Genomics of relapsed adult B-cell precursor ALL is highly heterogeneous, although some recurrent lesions involved in essential pathways deregulation were frequently observed. Selective and simultaneous targeting of these deregulated pathways may improve the results of current salvage therapies.
More information