Research publications

Found 1301 publicacions matching the indicated search criteria.
Schoenfelder S, Javierre BM, Furlan-Magaril M, Wingett SW, Fraser P

Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions.

J Vis Exp 28 Jun 2018, (136) . Epub 28 Jun 2018
The three-dimensional organization of the genome is linked to its function. For example, regulatory elements such as transcriptional enhancers control the spatio-temporal expression of their target genes through physical contact, often bridging considerable (in some cases hundreds of kilobases) genomic distances and bypassing nearby genes. The human genome harbors an estimated one million enhancers, the vast majority of which have unknown gene targets. Assigning distal regulatory regions to their target genes is thus crucial to understand gene expression control. We developed Promoter Capture Hi-C (PCHi-C) to enable the genome-wide detection of distal promoter-interacting regions (PIRs), for all promoters in a single experiment. In PCHi-C, highly complex Hi-C libraries are specifically enriched for promoter sequences through in-solution hybrid selection with thousands of biotinylated RNA baits complementary to the ends of all promoter-containing restriction fragments. The aim is to then pull-down promoter sequences and their frequent interaction partners such as enhancers and other potential regulatory elements. After high-throughput paired-end sequencing, a statistical test is applied to each promoter-ligated restriction fragment to identify significant PIRs at the restriction fragment level. We have used PCHi-C to generate an atlas of long-range promoter interactions in dozens of human and mouse cell types. These promoter interactome maps have contributed to a greater understanding of mammalian gene expression control by assigning putative regulatory regions to their target genes and revealing preferential spatial promoter-promoter interaction networks. This information also has high relevance to understanding human genetic disease and the identification of potential disease genes, by linking non-coding disease-associated sequence variants in or near control sequences to their target genes.
More information
Choy MK, Javierre BM, Williams SG, Baross SL, Liu Y, Wingett SW, Akbarov A, Wallace C, Freire-Pritchett P, Rugg-Gunn PJ, Spivakov M, Fraser P, Keavney BD

Promoter interactome of human embryonic stem cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks.

Nat Commun 28 Jun 2018, 9 (1) 2526. Epub 28 Jun 2018
Long-range chromosomal interactions bring distal regulatory elements and promoters together to regulate gene expression in biological processes. By performing promoter capture Hi-C (PCHi-C) on human embryonic stem cell-derived cardiomyocytes (hESC-CMs), we show that such promoter interactions are a key mechanism by which enhancers contact their target genes after hESC-CM differentiation from hESCs. We also show that the promoter interactome of hESC-CMs is associated with expression quantitative trait loci (eQTLs) in cardiac left ventricular tissue; captures the dynamic process of genome reorganisation after hESC-CM differentiation; overlaps genome-wide association study (GWAS) regions associated with heart rate; and identifies new candidate genes in such regions. These findings indicate that regulatory elements in hESC-CMs identified by our approach control gene expression involved in ventricular conduction and rhythm of the heart. The study of promoter interactions in other hESC-derived cell types may be of utility in functional investigation of GWAS-associated regions.
More information
Cid E, Yamamoto M, Yamamoto F

Blood group ABO gene-encoded A transferase catalyzes the biosynthesis of FORS1 antigen of FORS system upon Met69Thr/Ser substitution

Blood Adv 26 Jun 2018, 2 (12) 1371-1381.
Blood group A/B glycosyltransferases (AT/BTs) and Forssman glycolipid synthase (FS) are encoded by the evolutionarily related
More information
Dumbovic G, Biayna J, Banús J, Samuelsson J, Roth A, Diederichs S, Alonso S, Buschbeck M, Perucho M, Forcales SV

A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer.

Nucleic Acids Res. 20 Jun 2018, 46 (11) 5504-5524.
Primate-specific NBL2 macrosatellite is hypomethylated in several types of tumors, yet the consequences of this DNA hypomethylation remain unknown. We show that NBL2 conserved repeats are close to the centromeres of most acrocentric chromosomes. NBL2 associates with the perinucleolar region and undergoes severe demethylation in a subset of colorectal cancer (CRC). Upon DNA hypomethylation and histone acetylation, NBL2 repeats are transcribed in tumor cell lines and primary CRCs. NBL2 monomers exhibit promoter activity, and are contained within novel, non-polyA antisense lncRNAs, which we designated TNBL (Tumor-associated NBL2 transcript). TNBL is stable throughout the mitotic cycle, and in interphase nuclei preferentially forms a perinucleolar aggregate in the proximity of a subset of NBL2 loci. TNBL aggregates interact with the SAM68 perinucleolar body in a mirror-image cancer specific perinucleolar structure. TNBL binds with high affinity to several proteins involved in nuclear functions and RNA metabolism, such as CELF1 and NPM1. Our data unveil novel DNA and RNA structural features of a non-coding macrosatellite frequently altered in cancer.
More information
Sorigue M, Sancho JM

The persistent uncertainty of when to recommend allogeneic stem cell transplantation in follicular lymphoma.

Cancer 7 Jun 2018, . Epub 7 Jun 2018More information
Perez-Salvia M, Aldaba E, Vara Y, Fabre M, Ferrer C, Masdeu C, Zubia A, San Sebastian E, Otaegui D, Llinàs-Arias P, Rosselló-Tortella M, Berdasco M, Moutinho C, Setien F, Villanueva A, González-Barca E, Muncunill J, Navarro JT, Piris MA, Cossio FP, Esteller M

In vitro and in vivo activity of a new small-molecule inhibitor of HDAC6 in mantle cell lymphoma.

Haematologica 7 Jun 2018, . Epub 7 Jun 2018More information
Fernandez AF, Bayón GF, Sierra MI, Urdinguio RG, Toraño EG, García M, Carella A, Lopez V, Santamarina P, Pérez RF, Belmonte T, Ramon Tejedor J, Cobo I, Menendez P, Mangas C, Ferrero C, Rodrigo L, Astudillo A, Ortea I, Cueto Díaz S, Rodríguez-Gonzalez P, Ignacio García Alonso J, Mollejo M, Meléndez B, Dominguez G, Bonilla F, Fraga MF

Loss of 5hmC identifies a new type of aberrant DNA hypermethylation in glioma.

Hum. Mol. Genet. 5 Jun 2018, . Epub 5 Jun 2018
Aberrant DNA hypermethylation is a hallmark of cancer although the underlying molecular mechanisms are still poorly understood. To study the possible role of 5-hydroxymethylcytosine (5hmC) in this process we analyzed the global and locus-specific genome-wide levels of 5hmC and 5mC in human primary samples from 12 non-tumoral brains and 53 gliomas. We found that the levels of 5hmC identified in non-tumoral samples were significantly reduced in gliomas. Strikingly, hypo-hydroxymethylation at 4,627 (9.3%) CpG sites was associated with aberrant DNA hypermethylation and was strongly enriched in CpG island (CGI) shores. The DNA regions containing these CpG sites were enriched in H3K4me2 and presented a different genuine chromatin signature to that characteristic of the genes classically aberrantly hypermethylated in cancer. As this 5mC gain is inversely correlated with loss of 5hmC and has not been identified with classical sodium bisulfite-based technologies, we conclude that our data identifies a novel 5hmC-dependent type of aberrant DNA hypermethylation in glioma.
More information
Beekman R, Chapaprieta V, Russiñol N, Vilarrasa-Blasi R, Verdaguer-Dot N, Martens JHA, Duran-Ferrer M, Kulis M, Serra F, Javierre BM, Wingett SW, Clot G, Queirós AC, Castellano G, Blanc J, Gut M, Merkel A, Heath S, Vlasova A, Ullrich S, Palumbo E, Enjuanes A, Martín-García D, Beà S, Pinyol M, Aymerich M, Royo R, Puiggros M, Torrents D, Datta A, Lowy E, Kostadima M, Roller M, Clarke L, Flicek P, Agirre X, Prosper F, Baumann T, Delgado J, López-Guillermo A, Fraser P, Yaspo ML, Guigó R, Siebert R, Martí-Renom MA, Puente XS, López-Otín C, Gut I, Stunnenberg HG, Campo E, Martin-Subero JI

The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia.

Nat. Med. Jun 2018, 24 (6) 868-880. Epub 21 May 2018
Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.
More information
Martin R, Acha P, Ganster C, Palomo L, Dierks S, Fuster-Tormo F, Mallo M, Ademà V, Gómez-Marzo P, De Haro N, Solanes N, Zamora L, Xicoy B, Shirneshan K, Flach J, Braulke F, Schanz J, Kominowski A, Stromburg M, Brockmann A, Trümper L, Solé F, Haase D

Targeted deep sequencing of CD34+ cells from peripheral blood can reproduce bone marrow molecular profile in myelodysplastic syndromes.

Am. J. Hematol. Jun 2018, 93 (6) E152-E154. Epub 10 Apr 2018More information
Hurtado AM, Luengo-Gil G, Chen-Liang TH, Amaral F, Batta K, Palomo L, Lumbreras E, Przychodzen B, Caparros E, Amigo ML, Dıez-Campelo M, Zamora L, Salido Fierrez EJ, Maciejewski JP, Ortuño FJ, Vicente V, Del Canizo M, Sole F, Ferrer-Marin F, Wiseman DH, Jerez A

Transcriptomic rationale for synthetic lethality-targeting ERCC1 and CDKN1A in chronic myelomonocytic leukaemia.

Br. J. Haematol. 24 May 2018, . Epub 24 May 2018
Despite the absence of mutations in the DNA repair machinery in myeloid malignancies, the advent of high-throughput sequencing and discovery of splicing and epigenetics defects in chronic myelomonocytic leukaemia (CMML) prompted us to revisit a pathogenic role for genes involved in DNA damage response. We screened for misregulated DNA repair genes by enhanced RNA-sequencing on bone marrow from a discovery cohort of 27 CMML patients and 9 controls. We validated 4 differentially expressed candidates in CMML CD34
More information