Patients, doctors and researchers in an interdisciplinary and privileged environment

Patients, at the center of research

Research in to the basic, epidemiological, preventive, clinical and translational aspects of leukaemia and other hematologic malignancies

Caring research


Recent publications

Genescà E, Morgades M, Montesinos P, Barba P, Gil C, Guàrdia R, Moreno MJ, Martínez-Carballeira D, García-Cadenas I, Vives S, Ribera J, González-Campos J, González-Gil C, Zamora L, Ramírez JL, Díaz-Beya M, Mercadal S, Artola MT, Cladera A, Tormo M, Bermúdez A, Vall-Llovera F, Martínez P, Amigo ML, Monsalvo S, Novo A, Cervera M, García-Guiñon A, Juncà J, Ciudad J, Orfao A, Ribera JM

Unique clinico-biological, genetic and prognostic features of adult early T cell precursor acute lymphoblastic leukemia.

Haematologica 19 Sep 2019, . Epub 19 Sep 2019More information
Oliveira-Mateos C, Sánchez-Castillo A, Soler M, Obiols-Guardia A, Piñeyro D, Boque-Sastre R, Calleja-Cervantes ME, Castro de Moura M, Martínez-Cardús A, Rubio T, Pelletier J, Martínez-Iniesta M, Herrero-Martín D, Tirado OM, Gentilella A, Villanueva A, Esteller M, Farré L, Guil S

The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition.

Nat Commun 4 Sep 2019, 10 (1) 3979. Epub 4 Sep 2019
One largely unknown question in cell biology is the discrimination between inconsequential and functional transcriptional events with relevant regulatory functions. Here, we find that the oncofetal HMGA2 gene is aberrantly reexpressed in many tumor types together with its antisense transcribed pseudogene RPSAP52. RPSAP52 is abundantly present in the cytoplasm, where it interacts with the RNA binding protein IGF2BP2/IMP2, facilitating its binding to mRNA targets, promoting their translation by mediating their recruitment on polysomes and enhancing proliferative and self-renewal pathways. Notably, downregulation of RPSAP52 impairs the balance between the oncogene LIN28B and the tumor suppressor let-7 family of miRNAs, inhibits cellular proliferation and migration in vitro and slows down tumor growth in vivo. In addition, high levels of RPSAP52 in patient samples associate with a worse prognosis in sarcomas. Overall, we reveal the roles of a transcribed pseudogene that may display properties of an oncofetal master regulator in human cancers.
More information
Cornet-Masana JM, Banús-Mulet A, Carbó JM, Torrente MÁ, Guijarro F, Cuesta-Casanovas L, Esteve J, Risueño RM

Dual lysosomal-mitochondrial targeting by antihistamines to eradicate leukaemic cells.

EBioMedicine Sep 2019, 47 221-234. Epub 28 Aug 2019
Despite great efforts to identify druggable molecular targets for AML, there remains an unmet need for more effective therapies.
More information
Janin M, Ortiz-Barahona V, de Moura MC, Martínez-Cardús A, Llinàs-Arias P, Soler M, Nachmani D, Pelletier J, Schumann U, Calleja-Cervantes ME, Moran S, Guil S, Bueno-Costa A, Piñeyro D, Perez-Salvia M, Rosselló-Tortella M, Piqué L, Bech-Serra JJ, De La Torre C, Vidal A, Martínez-Iniesta M, Martín-Tejera JF, Villanueva A, Arias A, Cuartas I, Aransay AM, La Madrid AM, Carcaboso AM, Santa-Maria V, Mora J, Fernandez AF, Fraga MF, Aldecoa I, Pedrosa L, Graus F, Vidal N, Martínez-Soler F, Tortosa A, Carrato C, Balañá C, Boudreau MW, Hergenrother PJ, Kötter P, Entian KD, Hench J, Frank S, Mansouri S, Zadeh G, Dans PD, Orozco M, Thomas G, Blanco S, Seoane J, Preiss T, Pandolfi PP, Esteller M

Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program.

Acta Neuropathol. 19 Aug 2019, . Epub 19 Aug 2019
Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.
More information
Miguel-Escalada I, Bonàs-Guarch S, Cebola I, Ponsa-Cobas J, Mendieta-Esteban J, Atla G, Javierre BM, Rolando DMY, Farabella I, Morgan CC, García-Hurtado J, Beucher A, Morán I, Pasquali L, Ramos-Rodríguez M, Appel EVR, Linneberg A, Gjesing AP, Witte DR, Pedersen O, Grarup N, Ravassard P, Torrents D, Mercader JM, Piemonti L, Berney T, de Koning EJP, Kerr-Conte J, Pattou F, Fedko IO, Groop L, Prokopenko I, Hansen T, Marti-Renom MA, Fraser P, Ferrer J

Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes.

Nat. Genet. Jul 2019, 51 (7) 1137-1148. Epub 28 Jun 2019
Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been defined through clustering of enhancers in linear genome maps rather than in three-dimensional (3D) space. Furthermore, their target genes are often unknown. We have created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-associated enhancers to their target genes, often located hundreds of kilobases away. It also revealed >1,300 groups of islet enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architecture, therefore, provides a framework for interpretation of T2D genome-wide association study (GWAS) signals.
More information