Spotlight

State of the art laboratories

Research in to the basic, epidemiological, preventive, clinical and translational aspects of leukemia and other hematologic malignancies

A New Partnership of Public, Private and Competitive Funding

Patients, Scientists, Doctors; working together to cure leukemia

Research centred on patients

Caring research

News

Recent publications

Castaño J, Menendez P, Bruzos-Cidon C, Straccia M, Sousa A, Zabaleta L, Vazquez N, Zubiarrain A, Sonntag KC, Ugedo L, Carvajal-Vergara X, Canals JM, Torrecilla M, Sanchez-Pernaute R, Giorgetti A

Fast and Efficient Neural Conversion of Human Hematopoietic Cells.

Stem Cell Reports 9 Dec 2014, 3 (6) 1118-1131. Epub 13 Nov 2014
Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.
More information
Ost A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, Pantano L, Boenisch U, Itskov PM, Stoeckius M, Ruf M, Rajewsky N, Reuter G, Iovino N, Ribeiro C, Alenius M, Heyne S, Vavouri T, Pospisilik JA

Paternal diet defines offspring chromatin state and intergenerational obesity.

Cell 4 Dec 2014, 159 (6) 1352-64.
The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution.
More information
Freije A, Molinuevo R, Ceballos L, Cagigas M, Alonso-Lecue P, Rodriguez R, Menendez P, Aberdam D, De Diego E, Gandarillas A

Inactivation of p53 in Human Keratinocytes Leads to Squamous Differentiation and Shedding via Replication Stress and Mitotic Slippage.

Cell Rep 20 Nov 2014, 9 (4) 1349-60. Epub 6 Nov 2014
Tumor suppressor p53 is a major cellular guardian of genome integrity, and its inactivation is the most frequent genetic alteration in cancer, rising up to 80% in squamous cell carcinoma (SCC). By adapting the small hairpin RNA (shRNA) technology, we inactivated endogenous p53 in primary epithelial cells from the epidermis of human skin. We show that either loss of endogenous p53 or overexpression of a temperature-sensitive dominant-negative conformation triggers a self-protective differentiation response, resulting in cell stratification and expulsion. These effects follow DNA damage and exit from mitosis without cell division. p53 preserves the proliferative potential of the stem cell compartment and limits the power of proto-oncogene MYC to drive cell cycle stress and differentiation. The results provide insight into the role of p53 in self-renewal homeostasis and help explain why p53 mutations do not initiate skin cancer but increase the likelihood that cancer cells will appear.
More information
Guiu J, Bergen DJ, De Pater E, Islam AB, Ayllón V, Gama-Norton L, Ruiz-Herguido C, González J, López-Bigas N, Menendez P, Dzierzak E, Espinosa L, Bigas A

Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence.

J. Exp. Med. 17 Nov 2014, 211 (12) 2411-23. Epub 10 Nov 2014
Hematopoietic stem cell (HSC) specification occurs in the embryonic aorta and requires Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 701 promoter regions that were candidates to be regulated by Notch in the AGM. One of the most enriched regions corresponded to the Cdca7 gene, which was subsequently confirmed to recruit the RBPj factor but also Notch1 in AGM cells. We found that during embryonic hematopoietic development, expression of Cdca7 is restricted to the hematopoietic clusters of the aorta, and it is strongly up-regulated in the hemogenic population during human embryonic stem cell hematopoietic differentiation in a Notch-dependent manner. Down-regulation of Cdca7 mRNA in cultured AGM cells significantly induces hematopoietic differentiation and loss of the progenitor population. Finally, using loss-of-function experiments in zebrafish, we demonstrate that CDCA7 contributes to HSC emergence in vivo during embryonic development. Thus, our study identifies Cdca7 as an evolutionary conserved Notch target involved in HSC emergence.
More information
Castillo J, Amaral A, Azpiazu R, Vavouri T, Estanyol JM, Ballescà JL, Oliva R

Genomic and proteomic dissection and characterization of the human sperm chromatin.

Mol. Hum. Reprod. Nov 2014, 20 (11) 1041-53. Epub 5 Sep 2014
The mammalian spermatozoon has a unique chromatin structure where the majority of DNA is packaged by protamines, while a small fraction (∼8%) remains associated with nucleosomes. However, the chromatin affinity and repertoire of the additional proteins constituting the different sperm chromatin fractions have not yet been explored. To address this we have carried out a genomic and proteomic characterization of human sperm samples subjected to chromatin fractionation using either 0.65 M NaCl extraction followed by EcoRI/BamHI DNA restriction enzyme digestion, or micrococcal nuclease digestion. DNA fractions corresponding to the nucleosome-packaged DNA were sequenced, confirming an appropriate dissection of the sperm chromatin. In addition we detected and sequenced a subnucleosomal particle. Although both fractions were highly enriched at gene promoters, some sequences were found to be exclusively associated with one of those. The results of the proteomic analyses demonstrate that there are two distinct sets of sperm proteins which differ in chromatin affinity. Histone variants, transcription factors, chromatin-associated and modifying proteins involved in regulatory roles were identified as weakly attached to the sperm DNA, whereas proteins with structural roles were identified in the condensed fraction. Many factors, such as the histone lysine demethylase PHF8 identified for the first time in the human sperm cell in this study, were identified exclusively in soluble fraction. Our results provide additional support to the possibility that all of these factors may constitute additional layers of sperm epigenetic information or have structural or regulatory roles transmitted by the sperm cell to the oocyte at fertilization.
More information

Events