Stem cells, mesenchymal cancer and development

  • grup_stemcells_pablo
Clínic-UB

Laboratori Institut Josep Carreras

Ala Sud, Sector 2, Planta 2

Facultat de Medicina Universitat de Barcelona

C. Casanova 143

08036 Barcelona

 

Pablo Menéndez, Group Leader is an ICREA Research Professor

 

 

 

Summary

Our lab studies human pluripotent stem cells (hESCs and iPSCs) and human multipotent stem cells (hematopoietic and mesenchymal) derived from different tissue sources in order to understand the intrinsic and extrinsic factors, and developmentally conserved pathways, driving blood endothelium and mesenchymal differentiation. We are also actively involved in modeling t(4;11) MLL-AF4+ Acute Lymphoblastic Leukemia (with special interest in deciphering the cell-of-origin and cooperating oncogenic events) as well as other hematological malignances using cord blood-derived HSPCs and hESC/hiPSC-derived blood derivatives. In parallel, we are also studying the contribution of MSCs to hematological malignances and sarcomas.

Call for Postdoctoral and Associate Investigators

Menendez Precipita logo

The Stem cells, mesenchymal cancer and development Group is actively recruiting postdoctoral and Associate investigators. If you are interested, please send a full CV and a letter explaining your research experience and your research proposal for the group to Pablo Menéndez pmenendez@carrerasresearch.org See more information on our Work With Us Page.

Donate to support Dr Menéndez's work into Childhood Acute Lymphoblastic Leukaemia -see the video on the Spanish scientific research website Precipita (video in Spanish)

Research

The research in our laboratory is centred on six principle research lines:

  • Infant MLL-AF4+ pro-B Acute Lymphoblastic Leukemia: towards the elucidation of the cellular and molecular mechanisms underlying MLL-AF4 transformation in human stem cells
  • Development of new cellular and molecular strategies for the generation of fully functional hematopoietic and mesenchymal stem cells from human ESCs and iPS cells
  • Stem Cells and Cancer: Molecular and cellular mechanisms underlying pediatric mesenchymal cancer (leukemias and sarcomas)
  • Towards the generation of functional hematopoietic stem cells from hESC: lessons from the mouse
  • Coenzyme Q10 deficiency syndrome: understanding the genotype-phenotype association and metabolic dysfunction through generation of induced pluripotent stem cells (iPSC) from patient-specific uncorrected and genetically-corrected cells
  • Implication of the mesenchymal stromal cells in the Acute Myeloid leukemia onset and evolution

Collaborations

Prof. Mel Greaves and Tony Ford, Institute of Cancer Research, London. UK

Dr. Tanja Gruber, St. Jude´s Children Hospital., Memphis, USA

Dr. Geertruy te Kronnie, Pediatrics Department, University of Padova, Italy

Dr. Manuel Ramírez Orellana, Niño Jesús Hospital, Madrid, Spain

Dr. Mireia Camos, Hospital Sant Joan de Deu, Barcelona, Spain

Dr. Jose Luis Fuster, Hospital Virgen de la Arrixaca, Murcia, Spain


Prof. Majlinda Lako, Newcastle University, UK

Dr. Juan Bueren and Jose Carlos Segovia, CIEMAT, Madrid, Spain

Dr. Consuelo del Cañizo, Hospital Clínico de Salamanca, Spain

Dr. Mario F Fraga and Agustín Fernández, IUOPA, Oviedo, Spain

Dr. René Rodríguez, IUOPA, Oviedo, Spain

Prof. Plácido Navas and Carlos Santos Ocaña, UPO, Sevilla, Spain

Dr. Pedro J Real & Dr. Verónica Ramos, GENyO. Granada, Spain

Dr. Juan Carlos Rodríguez-Manzaneque, GENyO, Granada, Spain

Prof. Mario Delgado, IPBLN-CSIC, Granada, Spain

Prof. María Luisa Toribio, CBMSO-CSIC, Madrid, Spain.
Prof. Alberto Orfao, CIC, Salamanca. Spain

Prof. Rolf Marschalek. Goethe University, Frankfurt, Germany

Dr. Ronald W. Stam, Erasmus University, Rotterdam, The Netherlands
Dr. Anna Bigas, IMIM, Barcelona, Spain

Dr. Ignacio Varela, IBBITEC, Santander, Spain.
Dr. Eduardo Anguita, Hospital Clínico, Madrid, Spain

Dr. Jose Lopez barneo, Sevilla, IBiS, Spain

Dr. Antonio Postigo, IDIBAPS, Barcelona, Spain
Dr. Jose A Peréz-Simón, IBIS-HUVR, Seville, Spain
Dr. Gianni Cazanniga/Michela Bardini, University of Milan Bicacca, Ospedale San Gerardo, Monza, Italy
Dr. Pablo m García-Roves, IDIBAPS, Barcelona, Spain
Dr. Josep Nomdedeu and Dr.Jordi Sierra, Hospital Sant Pau, Barcelona, Spain
Dr. Susanna Vives y Francesc Solé, Hospital Germansd Trias i Pujol/IJC, Badalona, Spain

People

Selected publications

Muñoz-López A, Romero-Moya D, Prieto C, Ramos-Mejía V, Agraz-Doblas A, Varela I, Buschbeck M, Palau A, Carvajal-Vergara X, Giorgetti A, Ford A, Lako M, Granada I, Ruiz-Xivillé N, Rodríguez-Perales S, Torres-Ruíz R, Stam RW, Fuster JL, Fraga MF, Nakanishi M, Cazzaniga G, Bardini M, Cobo I, Bayon GF, Fernandez AF, Bueno C, Menendez P

Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency.

Stem Cell Reports 11 Oct 2016, 7 (4) 602-618. Epub 22 Set 2016
Induced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL) has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L)-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming "boosters" also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency.
Més informació
Prieto C, Stam RW, Agraz-Doblas A, Ballerini P, Camos M, Castaño J, Marschalek R, Bursen A, Varela I, Bueno C, Menendez P

Activated KRAS cooperates with MLLAF4 to promote extramedullary engraftment and migration of cord blood CD34+ HSPC but is insufficient to initiate leukemia.

Cancer Res. 2 Feb 2016, . Epub 2 Feb 2016
The MLL-AF4 (MA4) fusion gene is the genetic hallmark of an aggressive infant pro-B-acute lymphoblastic leukemia (B-ALL). Our understanding of MA4-mediated transformation is very limited. Whole-genome sequencing studies revealed a silent mutational landscape, which contradicts the aggressive clinical outcome of this hematological malignancy. Only RAS mutations were recurrently detected in patients and found to be associated with poorer outcome. The absence of MA4-driven B-ALL models further questions whether MA4 acts as a single oncogenic driver or requires cooperating mutations to manifest a malignant phenotype. We explored whether KRAS activation cooperates with MA4 to initiate leukemia in cord blood (CB)-derived CD34+ hematopoietic stem/progenitor cells (HSPCs). Clonogenic and differentiation/proliferation assays demonstrated that KRAS activation does not cooperate with MA4 to immortalize CD34+ HSPCs. Intra-bone marrow transplantation into immunodeficient mice further showed that MA4 and KRASG12V alone or in combination enhanced hematopoietic repopulation without impairing myeloid-lymphoid differentiation, and that mutated KRAS did not cooperate with MA4 to initiate leukemia. However, KRAS activation enhanced extramedullary hematopoiesis of MA4-expressing cell lines and CD34+ HSPCs that was associated with leukocytosis and central nervous system infiltration, both hallmarks of infant t(4;11)+B-ALL. Transcriptional profiling of MA4-expressing patients supported a cell migration gene signature underlying the mutant KRAS-mediated phenotype. Collectively, our findings demonstrate that KRAS impacts the homeostasis of MA4-expressing HSPCs, suggesting that KRAS activation in MA4+ B-ALL is important for tumor maintenance rather than initiation.
Més informació
Bueno C, Sardina JL, Di Stefano B, Romero-Moya D, Muñoz-López A, Ariza L, Chillón MC, Balanzategui A, Castaño J, Herreros A, Fraga MF, Fernández A, Granada I, Quintana-Bustamante O, Segovia JC, Nishimura K, Ohtaka M, Nakanishi M, Graf T, Menendez P

Reprogramming human B-cells into induced pluripotent stem cells and its enhancement by C/EBPα.

Leukemia 26 Oct 2015, . Epub 26 Oct 2015
B-cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B-cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B-cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus (SeV). Co-expression of c/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B-cells. We also demonstrate that myeloid cells are much easier to reprogram than B- and T-lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B-cells since biased reprogramming was avoided by using freshly-isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B-cells offers an unprecedented opportunity for studying developmental B-lymphopoiesis and modeling B-cell malignances.Leukemia accepted article preview online, 26 October 2015. doi:10.1038/leu.2015.294.
Més informació
Sanjuan-Pla A, Bueno C, Prieto C, Acha P, Stam RW, Marschalek R, Menéndez P

Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia.

Blood 13 Oct 2015, . Epub 13 Oct 2015
Infant B-cell acute lymphoblastic leukemia (B-ALL) accounts for 10% of childhood ALL. The genetic hallmark of most infant B-ALL are chromosomal rearrangements of the mixed-lineage leukemia (MLL) gene. Despite improvement in the clinical management and survival (~85-90%) of childhood B-ALL, the outcome of infants with MLL-rearranged (MLL-r) B-ALL remains dismal, with overall survival <35%. Among MLL-r infant B-ALL, t(4;11)+ patients harboring the fusion MLL-AF4 (MA4), display a particularly poor prognosis and a pro-B/mixed phenotype. Studies in monozygotic twins and archived blood spots have provided compelling evidence of a single cell of prenatal origin as target for MA4 fusion, explaining the brief leukemia latency. Despite its aggressiveness and short latency, current progress about its etiology, pathogenesis and cellular origin is limited as evidenced by the lack of mouse/human models recapitulating the disease phenotype/latency. We propose this is because infant cancer is from an etiological and pathogenesis standpoint distinct to adult cancer and should be seen as a developmental disease. This is supported by whole-genome sequencing studies suggesting that opposite to the view of cancer as "multiple-and-sequential-hit" model, t(4;11) alone might be sufficient to spawn leukemia. The stable genome of these patients suggests that in infant developmental cancer one "big-hit" might be sufficient for overt disease, and supports a key contribution of epigenetics and a prenatal cell-of-origin during a critical developmental window of stem cell vulnerability in the leukemia pathogenesis. Here, we revisit the biology of t(4;11)+ infant B-ALL with emphasis on its origin, genetics and disease models.
Més informació
Bueno C, Ayllón V, Montes R, Navarro-Montero O, Ramos-Mejia V, Real PJ, Romero-Moya D, Araúzo-Bravo MJ, Menendez P

FLT3 activation cooperates with MLL-AF4 fusion protein to abrogate the hematopoietic specification of human ESCs.

Blood 9 Mai 2013, 121 (19) 3867-78, S1-3. Epub 11 Mar 2013
Mixed-lineage leukemia (MLL)-AF4 fusion arises prenatally in high-risk infant acute pro-B-lymphoblastic leukemia (pro-B-ALL). In human embryonic stem cells (hESCs), MLL-AF4 skewed hematoendothelial specification but was insufficient for transformation, suggesting that additional oncogenic insults seem required for MLL-AF4-mediated transformation. MLL-AF4+ pro-B-ALL expresses enormous levels of FLT3, occasionally because of activating mutations, thus representing a candidate cooperating event in MLL-AF4+ pro-B-ALL. Here, we explored the developmental impact of FLT3 activation alone, or together with MLL-AF4, in the hematopoietic fate of hESCs. FLT3 activation does not affect specification of hemogenic precursors but significantly enhances the formation of CD45(+) blood cells, and CD45(+)CD34(+) blood progenitors with clonogenic potential. However, overexpression of FLT3 mutations or wild-type FLT3 (FLT3-WT) completely abrogates hematopoietic differentiation from MLL-AF4-expressing hESCs, indicating that FLT3 activation cooperates with MLL-AF4 to inhibit human embryonic hematopoiesis. Cell cycle/apoptosis analyses suggest that FLT3 activation directly affects hESC specification rather than proliferation or survival of hESC-emerging hematopoietic derivatives. Transcriptional profiling of hESC-derived CD45(+) cells supports the FLT3-mediated inhibition of hematopoiesis in MLL-AF4-expressing hESCs, which is associated with large transcriptional changes and downregulation of genes involved in hematopoietic system development and function. Importantly, FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform hESC-derived hematopoietic cells, suggesting the need of alternative (epi)-genetic cooperating hits.
Més informació
Show all publications

Current projects

Genomic, celullar and developmental reconstruction of infant MLL-AF4+ Acute Lymphoblastic Leukemia

Responsable:Pablo Menéndez
Codi:INFANTLEUKAEMIA
Financiadors:

Pro-inflammatory bone marrow stroma in Acute Myeloid Leukemia: implication in the onset, evolution and drug resistance (Co-leader, Michael Rosu-Myles, Ottawa)

Responsable:Pablo Menéndez
Codi:H4080-144541
Financiadors:
Data d'inici:01/10/2014
Data de finalització:31/12/2019

Grupo SGR330 (Support Research Group)

Responsable:Pablo Menéndez
Codi:SGR330
Financiadors:
Data d'inici:01/11/2014
Data de finalització:31/12/2016

Simulación genómica y celular de la leucemia linfoblástica aguda del lactante con reordenamiento MLLAF4

Responsable:Clara Bueno
Codi:PI14/01191
Financiadors:
Data d'inici:01/11/2014
Data de finalització:31/12/2017

Reconstrucción genómica y celular de la leucemia linfoblástica aguda del lactante con reordenamiento MLLAF4

Responsable:Clara Bueno
Codi:CII5152720BUEN
Financiadors:
Data d'inici:01/09/2015
Data de finalització:30/06/2018

Inmunoterapia adoptiva con células T CAR-NG2 para la leucemia aguda con reordenamiento MLL

Responsable:Pablo Menéndez
Codi:SAF2016-4603-1
Financiadors:
Data d'inici:01/01/2017
Data de finalització:31/12/2020

Inmunoterapia adoptiva con células T CAR-NG2 para la leucemia aguda con reordenamiento MLL.

Responsable:Clara Bueno
Codi:FERO
Financiadors:
Data d'inici:01/01/2017
Data de finalització:31/12/2017

Escalado del suministro y estudios de eficacia del indolocarbazol EC-70124 en modelos animales predictivos (INDOLKIN)

Responsable:Pablo Menéndez
Codi:RTC2016-4603-1
Financiadors:
Data d'inici:01/01/2016
Data de finalització:31/12/2019

Previous projects

Célula DIANA y eventos oncogénicos secundarios en la leucemia linfoblástica aguda del lactante con reordenamiento MLL-AF4

Responsable:Pablo Menéndez
Codi:SAF2013_43065-R
Financiadors:
Data d'inici:01/10/2014
Data de finalització:31/12/2016

Embryonic or fetal origin of the target cell for MLL-AF4 transformation in infant acute lymphoblastic leukemia

Responsable:Pablo Menéndez
Financiadors:
Data d'inici:01/01/2015
Data de finalització:31/12/2016

Project ERANET

Responsable:Pablo Menéndez
Codi:PI12/03112
Financiadors:
Data d'inici:01/01/2013
Data de finalització:31/03/2016

Project AECC

Responsable:Pablo Menéndez
Codi:AECC Cancer infantil 0023
Financiadors:
Data d'inici:01/09/2013
Data de finalització:30/09/2015

Fundación Sandra Ibarra para cáncer infantil 2013

Responsable:Pablo Menéndez
Financiadors:
Data d'inici:01/01/2014
Data de finalització:31/12/2014

Career Integration Grant (CIG) European Commission

Responsable:Alejandra Sanjuan
Codi:CIG
Financiadors:
Data d'inici:01/01/2014
Data de finalització:31/12/2017